
Math 692 Seminar in Finite Elements Version 21
November 1, 2004 (Bueler)

Poisson’s equation by the FEM

using a MATLAB mesh generator

The finite element method [1] applied to the Poisson problem

(1) −4u = f on D, u = 0 on ∂D,

on a domain D ⊂ R2 with a given triangulation (mesh) and with a chosen finite element

space based upon this mesh produces linear equations

Av = b.

Figure 1 shows a particular triangulation for the unit disc D1 = {(x, y) : x2 + y2 < 1}.
There are five interior nodes corresponding to unknowns. In this note I will give enough

details to set up and solve the 5 × 5 matrix problem which results when we choose

piecewise-linear finite elements. More generally, I’ll give a short Matlab code which

works with Persson and Strangs’ one page mesh generator distmesh2d.m [2]. Thus I will

approximately solve Poisson’s equation on quite general domains in less than two pages

of Matlab.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

1

2

3

4

5

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

16

17

18

Figure 1. A simple finite element mesh on the unit disc with 18 triangles,

15 vertices and 5 interior vertices (i.e. locations of the unknowns). The

interior vertices are numbered in bold.

1This version has one core change, namely, a completely different and far superior choice of reference
triangle. (Thanks to David Maxwell for guidance!) The function poissonv2.m is changed appropriately.
In addition, poissonv2.m does not itself include a call to distmesh2d.m [2]; see the examples.

1

2

Suppose there are N interior nodes pj = (xj, yj). At pj the unknown uj approximates

u(xj, yj). If ϕj is the hat function [1, page 29] corresponding to node pj then u(x, y) ≈
uh(x, y) =

∑N
j=1 ujϕj(x, y). We seek the column vector v = (u1, u2, . . . , uN)> such that

Av = b where the entries of A, b are given by

ajk =

∫

D

∇ϕj · ∇ϕk and bj =

∫

D

fϕj.

In fact, I construct the matrix A by going through the triangles in some order; such an

order is given in figure 1. Write “j ∈ T” if node pj is a corner of a triangle T . For each

triangle T we can compute the contribution to ajk, bj because

ajk =
∑

{T such that j∈T and k∈T}

∫

T

∇ϕj · ∇ϕk,

and, similarly,

(2) bj =
∑

{T such that j∈T}

∫

T

fϕj.

The contributions to A associated to a given T can be thought of as 3 × 3 matrix, the

element stiffness matrix [1, equation (1.27)] for T .

To compute the element stiffness matrix it is useful, though not essential, to refer the

whole problem to a standard reference triangle. In fact, if the original triangle T lies in the

(x1, x2) plane then our reference triangle will be R = {(ξ1, ξ2) : ξ1 + ξ2 ≤ 1, ξ1, ξ2 ≥ 0}
in a new (ξ1, ξ2) plane. Denote x = (x1, x2) and ξ = (ξ1, ξ2). Suppose xj = (xj

1, x
j
2),

xk = (xk
1, x

k
2), xl = (xl

1, x
l
2) are the corners of T . The affine map

Φ(ξ) =
(
(xk

1 − xj
1)ξ1 + (xl

1 − xj
1)ξ2 + xj

1, (x
k
2 − xj

2)ξ1 + (xl
2 − xj

2)ξ2 + xj
2,

)

sends R to T . Note that Φ sends

(0, 0) → xj, (1, 0) → xk, (0, 1) → xl.

We want to integrate over T by changing variables to an integral over R. For example,
∫

T

f(x)ϕj(x) dx =

∫

R

f(ξ)ϕj(ξ) |J | dξ

where J = dΦ is the differential of the change of variables, a 2 × 2 matrix, and |J | =

| det(J)| is the Jacobian determinant:

|J | =
∣∣∣∣det

(
xk

1 − xj
1 xl

1 − xj
1

xk
2 − xj

2 xl
2 − xj

2

)∣∣∣∣ = |(xk
1 − xj

1)(x
l
2 − xj

2)− (xl
1 − xj

1)(x
k
2 − xj

2)|.

In fact, to do the just-mentioned integral numerically I choose to also approximate f

by a linear function on T , that is,

f ≈ f(xj)ϕj + f(xk)ϕk + f(xl)ϕl

3

on T so

bj =

∫

T

f(x)ϕj(x) dx ≈ |J | (
f(xj) f(xk) f(xl)

)




∫
R

ϕ2
j dξ

∫
R

ϕkϕj dξ

∫
R

ϕlϕj dξ




Because ϕj(ξ) = 1 − ξ1 − ξ2, ϕk(ξ) = ξ1, and ϕk(ξ) = ξ2, we may complete this job by
doing the following integrals:∫

R
ϕ2

j dξ =
∫

R
ϕ2

k dξ =
∫

R
ϕ2

l dξ =
1
12

,

∫

R
ϕjϕk dξ =

∫

R
ϕkϕl dξ =

∫

R
ϕlϕj dξ =

1
24

.

On the other hand we need to compute the contributions to the stiffness matrix. Using

the summation convention,∫

T

∇ϕj · ∇ϕk dx =

∫

T

∂ϕj

∂xs

∂ϕk

∂xs

dx =

∫

R

∂ϕj

∂ξp

∂ξp

∂xs

∂ϕk

∂ξq

∂ξq

∂xs

|J | dξ.

But
∂ξp

∂xs

∂ξq

∂xs

=
[
J−1(J−1)>

]
pq

=
[
(J>J)−1

]
pq

,

and
∂ϕj

∂ξp
= (−1,−1), ∂ϕk

∂ξp
= (1, 0), ∂ϕl

∂ξp
= (0, 1). Letting Q = (J>J)−1 and noting that the

area of R is 1
2
, we have, for the ajk contribution,

∫

T

∇ϕj · ∇ϕk dx =
1

2
|J | ∂ϕj

∂ξp

Q

(
∂ϕk

∂ξp

)>
.

That is, Q is the matrix of the quadratic form we need.

I have written such a program, namely poissonv2.m which appears on page 4. I now

illustrate it by examples. First consider a problem with a known solution.

Example 1. Suppose D = D1 is the unit disc and suppose f(x, y) = 4. It is easy to
check that u(x, y) = 1− x2 − y2 is an exact solution to (1). Note that f is constant and
thus the piecewise linear approximation involved in the load integrals is actually exact. To
use distmesh2d.m and the poissonv2.m I first describe the disc by the signed distance

function d(x, y) =
√

x2 + y2 − 1. I choose the mesh to be fine enough so that the typical
triangle has linear dimension h0 = 0.5 and get the mesh in figure 1. Then:

>> f=inline(’4’,’p’); fd=inline(’sqrt(sum(p.^2,2))-1’,’p’);

>> [p,t]=distmesh2d(fd,@huniform,0.5,[-1,-1;1,1],[]);

>> [uh,in]=poissonv2(f,fd,0.5,p,t);

The arrays p and t are the coordinates of the points of the triangulation and the indices
of corners of triangles, respectively. The output array in tells me which of the nodes are
interior nodes. The array uh is the approximate solution at all nodes. I find that the
approximate solution at the five interior points (see figure 1 for the order of the points) is

>> uh(in>0)’

ans =

0.76061 0.81055 0.84264 0.81055 0.76061

4

The maximum error is

>> u = 1-sum(p.^2,2); err=max(abs(uh-u))

err =

0.038957

and thus we have about a digit-and-a-half of accuracy at the nodes.

Exercise. Run the following. What PDE problem is approximately solved by wh?

>> f=inline(’-pi^2*sin(pi*p(:,1)).*(1-p(:,2))’,’p’);

>> fd=inline(’drectangle(p,0,1,0,1)’,’p’);

>> [p,t]=distmesh2d(fd,@huniform,0.1,[0,0;1,1],[0,0;0,1;1,0;1,1]);

>> [uh,in]=poissonv2(f,fd,0.1,p,t);

>> wh=uh+sin(pi*p(:,1)).*(1-p(:,2));

>> trimesh(t,p(:,1),p(:,2),wh), axis([-.2 1.2 -.2 1.2 0 1])

Evaluate the accuracy of the result by exactly solving the same problem a different way

(i.e. a standard exact method).

Example 2. Let’s do a harder example than the previous, just to show off. Suppose D

is a rectangular region with an off-center hole removed:

D =
{
(x, y) : −4 < x < 2, −2 < y < 2, and x2 + y2 > 1

}
.

Suppose f is a function which is concentrated near (x0, y0) = (−3, 1):

f(x, y) = e−4((x+3)2+(x−1)2)

The commands necessary to approximately solve −4u = f with Dirichlet boundary
conditions u = 0 on ∂D, and to display the answer, amount to four lines:

>> f=inline(’exp(-4*((p(:,1)+3).^2+(p(:,2)-1).^2))’,’p’);

>> fd=inline(’ddiff(drectangle(p,-4,2,-2,2),dcircle(p,0,0,1))’,’p’);

>> [p,t]=distmesh2d(fd,@huniform,0.2,[-4,-2;2,2],[-4,-2;-4,2;2,-2;2,2]);

>> [uh,in]=poissonv2(f,fd,0.2,p,t); axis([-4.5 2.5 -2.5 2.5 0 .14])

The result is shown in figure 2. Because f is so concentrated around (−3, 1), the result

uh is nearly an approximation of (a multiple of) the Green’s function G = G(x0,y0) which

solves −4G = δ(x0,y0) with Dirichlet boundary conditions.

Example 3. Convergence is important. We redo example 1 with a sequence of meshes:

h0 = 0.5, 0.3, . . . , 0.5

(
3

5

)5

.

In figure 3 we see that the maximum error at the nodes goes to zero at rate O(h2
0).

Roughly speaking, this is predicted by theorem 4.3 in [1]. We also see that meshing by

distmesh2d.m is consistently a lot more time-consuming than the execution of poissonv2.m.

Code. The Matlab function poissonv2.m looks like this:

5

−4
−2

0
2

−2

0

2
0

0.05

0.1

Figure 2. (a) Mesh for a harder example. (b) The approximate solution

uh(x, y). Note f is much more concentrated near (−3, 1) than is uh.

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

h
0

||u
−

u h|| ∞

C h
0
2

10
−1

10
0

10
−2

10
−1

10
0

10
1

10
2

h
0

tim
e

in
 s

ec
on

ds

distmesh2d
poissonv2

Figure 3. (a) Maximum error at nodes for the FEM solution of the Pois-

son equation on the unit disc with f = 4. Errors are O(h2
0). (b) Times.

function [uh,in]=poissonv2(f,fd,h0,p,t);

%POISSONV2 Solve Poisson’s equation on a domain D by the FE method:

%...

%ELB 10/31/04

geps=.001*h0; ind=(feval(fd,p) < -geps); % find interior nodes

Np=size(p,1); N=sum(ind); % Np=# of nodes; N=# of interior nodes

in=zeros(Np,1); in(ind)=(1:N)’; % number the interior nodes

for j=1:Np, ff(j)=feval(f,p(j,:)); end % eval f once for each node

% loop over triangles to set up stiffness matrix A and load vector b

6

A=sparse(N,N); b=zeros(N,1);

for n=1:size(t,1)

j=t(n,1); k=t(n,2); l=t(n,3); vj=in(j); vk=in(k); vl=in(l);

J=[p(k,1)-p(j,1), p(l,1)-p(j,1); p(k,2)-p(j,2), p(l,2)-p(j,2)];

ar=abs(det(J))/2; C=ar/12; Q=inv(J’*J); fT=[ff(j) ff(k) ff(l)];

if vj>0

A(vj,vj)=A(vj,vj)+ar*sum(sum(Q)); b(vj)=b(vj)+C*fT*[2 1 1]’; end

if vk>0

A(vk,vk)=A(vk,vk)+ar*Q(1,1); b(vk)=b(vk)+C*fT*[1 2 1]’; end

if vl>0

A(vl,vl)=A(vl,vl)+ar*Q(2,2); b(vl)=b(vl)+C*fT*[1 1 2]’; end

if vj*vk>0

A(vj,vk)=A(vj,vk)-ar*sum(Q(:,1)); A(vk,vj)=A(vj,vk); end

if vj*vl>0

A(vj,vl)=A(vj,vl)-ar*sum(Q(:,2)); A(vl,vj)=A(vj,vl); end

if vk*vl>0

A(vk,vl)=A(vk,vl)+ar*Q(1,2); A(vl,vk)=A(vk,vl); end

end

uh=zeros(Np,1); uh(ind)=A\b; % solve for FE solution

trimesh(t,p(:,1),p(:,2),uh), axis tight % display

Finally, a note about numerical linear algebra. The system Ax = b which we solve is
symmetric, positive-definite, and very sparse [1]. The standard advice for solving such
systems is to use the method of conjugate gradients [3]. Furthermore, preconditioning by
incomplete Cholesky decomposition is appropriate and recommended. We might, there-
fore, suppose that the following, or something similar, should be faster than “A\b”:

R=cholinc(A,’0’); uh=pcg(A,b,1e-8,max(2*sqrt(N),20),R’,R);

From an extremely small amount of experimentation, I note that this more sophisticated

method seems not to be faster, even for 104 nodes. This could be a consequence of my

use of Matlab’s cholinc and pcg commands, but I think that it is actually because

Matlab’s “\” is very well optimized, and because, for the cases I tried, it turns out that

the mesh-ordering coming from distmesh2D.m produces a strongly band-limited matrix.

Thus the “A\b” method is faster, not to mention easier to type. On the other hand, if you

choose someday to implement the finite element method using a compiled language like

C++ or Fortran then you would be wise to consider a preconditioned conjugate gradient

method.

References

[1] C. Johnson, Numerical solution of partial differential equations by the finite element method, Cam-
bridge University Press, 1987.

[2] P.-O. Persson and G. Strang, A simple mesh generator in MATLAB, SIAM Review, 46 (2004),
pp. 329–345.

[3] L. N. Trefethen, Numerical Linear Algebra, SIAM, Philadelphia, 1997.

