What to know about matrix norms: Complete List!

- Matrix norms have all vector norm properties:
 \[\|A\| = 0 \iff A = 0, \|A + B\| \leq \|A\| + \|B\|, \|\alpha A\| = |\alpha| \|A\| \]

- Only four norms in widespread use: \(\|\cdot\|_1 \), \(\|\cdot\|_2 \), \(\|\cdot\|_\infty \), and \(\|\cdot\|_{\text{Frob}} \)

- Three have computable formulas (1, \(\infty \), Frob)

- Three are induced from vector norms (1, 2, \(\infty \))

- All four have \(\|AB\| \leq \|A\| \|B\| \) (but—weirdly—for different reasons)

- Always \(\rho(A) \leq \|A\| \) for any norm, but learn to expect \(\rho(A) < \|A\| \)

- Iteration \(v, Av, A^2v, A^3v, \ldots \) converges if and only if \(\rho(A) < 1 \)

- Thus: if \(\|A\| < 1 \) then convergence \ldots but not conversely

- \(\|\cdot\|_2 \) is best for hermitian \(A \): if \(A^* = A \) then \(\rho(A) = \|A\|_2 \)

- Geometric picture clearest for \(\|\cdot\|_2 \): image under \(A \) of unit ball is ellipsoid with \(\|A\|_2 \) the length of the semimajor axis

- If \(A \) is square: \(\text{cond}(A) = \|A\|_2 \|A^{-1}\|_2 \)