Additional XI. Suppose $f : [a, b] \to \mathbb{R}$. We define the lower envelope g of f to be the function defined by

$$g(y) = \sup_{\delta > 0} \inf_{|x-y| < \delta} f(x),$$

and the upper envelope h by

$$h(y) = \inf_{\delta > 0} \sup_{|x-y| < \delta} f(x).$$

Show $g(x) \leq f(x) \leq h(x)$ for all x. Show that f is continuous at x if and only if $g(x) = h(x)$.

[Compare to 2.51 on page 52.]