2003i:58041 58J35 35K05 58J65
Grigor’yan, Alexander (4-LNDIC);
Saloff-Coste, Laurent (1-CRNL)

Dirichlet heat kernel in the exterior of a compact set.

Let M be a complete, noncompact Riemannian manifold. Consider the behavior of the heat flow for $\Omega = M \setminus K$, where K is a compact set. The authors establish the following result which relates the heat kernel $p(t, x, y)$ on M and the Dirichlet heat kernel $p_\Omega(t, x, y)$ on Ω:

Theorem. Suppose M has nonnegative Ricci curvature. If the Brownian motion on M is transient, then there exist $c, C > 0$ such that

$$cp(Ct, x, y) \leq p_\Omega(t, x, y) \leq p(t, x, y)$$

for all $t > 0$ and x, y sufficiently far from K. If, however, M is recurrent and a special connectedness-at-infinity condition holds (implying M has only one end), then

$$c_1 D(t, x, y)p(C_1 t, x, y) \leq p_\Omega(t, x, y) \leq c_2 D(t, x, y)p(C_2 t, x, y),$$

where D is a specified symmetric function defined in terms of the distance from K and the volume growth of M. In the recurrent case, $\inf_{t>0} D(t, x, y) = 0$ for any $x, y \in M$.

This theorem gives a natural relation between the recurrence/transience of the Brownian motion and the heat absorption of K. Even for the Euclidean plane, a recurrent case, the result is apparently new: Example. If $M = \mathbb{R}^2$, K is the closed unit disc, then

$$D(t, x, y) = \frac{\log |x| \log |y|}{(\log(1 + \sqrt{t}) + \log |x|)(\log(1 + \sqrt{t}) + \log |y|)}.$$

The proof of the recurrent case actually uses the transient result.

This interesting situation is possible because all results are computed for weighted manifolds. In particular, given appropriate K, recurrent M support harmonic functions h, the weighted manifolds for which are transient. Also, the technique of proof involves the parabolic Harnack inequality of P. Li and S.-T. Yau [Acta Math. 156 (1986), no. 3-4, 153–201; MR 87f:58156], instead of the direct use of the curvature hypothesis. Thus the results apply in somewhat greater geometric generality.

This paper is part of a project by its authors to determine the behavior of the heat kernel on the ends of complete manifolds. Partial results are given in this direction.

Edward L. Bueler (1-AK)
[References]

