
COMPARISON OF

MATLAB, OCTAVE, AND PYTHON

ON EXAMPLES FOR MATH 665 NUMERICAL LINEAR ALGEBRA

ED BUELER

Trefethen & Bau’s Numerical Linear Algebra uses Matlab (http://www.mathworks.com) for very
good reason. Matlab was originally designed by Cleve Moler for teaching numerical linear algebra,
although it has since become a powerful programming language and general engineering tool.

There are open source alternatives to Matlab, and they’ll work fine for this course. GNU Octave
is intended to be a Matlab clone, and in fact the examples below work in an identical way
in Matlab and in Octave. Incompatibilities between Octave and Matlab are rare (and are
reportable bugs). I will mostly use Octave myself for teaching. To download Octave, go to
http://www.gnu.org/software/octave/.

The general purpose language Python has developed in the direction of Matlab functionality
with the scipy (http://www.scipy.org/) and Matplotlib (http://matplotlib.sourceforge.
net/) projects. The ipython interactive shell gives the most Matlab-like experience. (The
combination of all of these tools is called “pylab”.) The examples below hint at the computer
language differences, and also the different modes of thought, between Matlab/Octave and
Python. Only students who already use Python are likely to find it effective for this course.

Some brief “how-to” comments might help compare examples below. The Matlab/Octave exam-
ples ortho.m and hello.m are scripts. These are run by starting Matlab/Octave, making sure
that the “path” includes the directory containing the examples. Then type the name of the script
at the prompt, without the “.m”: >> ortho or >> hello. For the first two Python examples type
run ortho.py or run hello.py at the ipython prompt or python ortho.py, python hello.py

at a ordinary shell prompt. The last example mgs.m, mgs.py is a function which needs an input.
In Matlab/Octave you might do

>> A = randn(10,10); [Q,R] = mgs(A);

In Python you might do “ from mgs import mgs; A = randn(10,10); Q,R = mgs(A) ”

ortho.m (Matlab & Octave) ortho.py (Python)

% Trefethen & Bau, page 64

x = (-128:128)’/128;

A = [x.^0 x.^1 x.^2 x.^3];

[Q,R] = qr(A,0);

scale = Q(257,:);

Q = Q * diag(1 ./ scale);

plot(Q)

Trefethen & Bau, page 64

from pylab import *

x = linspace(-1.0,1.0,257).reshape((257,1))

A = concatenate((x**0, x**1, x**2, x**3),axis=1)

[Q,R] = qr(A)

scale = Q[256,:]

Q = dot(Q,diag(1.0 / scale))

plot(Q), show()

Date: January 5, 2013. Download examples at http://www.dms.uaf.edu/~bueler/Math665S13.htm.

http://www.mathworks.com
http://www.gnu.org/software/octave/
http://www.scipy.org/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://www.dms.uaf.edu/~bueler/Math665S13.htm

hello.m hello.py

% assembles HELLO matrix

% see Trefethen&Bau lecture 9

bl = ones(8,6);

H = bl;

H(1:3,3:4) = zeros(3,2);

H(6:8,3:4) = zeros(3,2);

E = bl;

E(3,3:6) = zeros(1,4);

E(6,3:6) = zeros(1,4);

L = bl;

L(1:6,3:6) = zeros(6,4);

O = bl;

O(3:6,3:4) = zeros(4,2);

HELLO = zeros(15,40);

HELLO(2:9,2:7) = H;

HELLO(3:10,10:15) = E;

HELLO(4:11,18:23) = L;

HELLO(5:12,26:31) = L;

HELLO(6:13,34:39) = O;

spy(HELLO)

assembles HELLO matrix

see Trefethen&Bau lecture 9

from pylab import ones, zeros, spy, show

bl = ones((8,6))

H = bl.copy()

H[0:3,2:4] = zeros((3,2))

H[5:8,2:4] = zeros((3,2))

E = bl.copy()

E[2,2:6] = zeros((1,4))

E[5,2:6] = zeros((1,4))

L = bl.copy()

L[0:6,2:6] = zeros((6,4))

O = bl.copy()

O[2:6,2:4] = zeros((4,2))

HELLO = zeros((15,40))

HELLO[1:9,1:7] = H

HELLO[2:10,9:15] = E

HELLO[3:11,17:23] = L

HELLO[4:12,25:31] = L

HELLO[5:13,33:39] = O

spy(HELLO,marker=’.’); show()

mgs.m mgs.py

function [Q,R] = mgs(A);

% MGS computes reduced QR decomposition

[m n] = size(A);

R = zeros(n,n);

if max(max(abs(A))) == 0

Q = eye(m,n); return

end

Q = A;

for i = 1:n

r = norm(Q(:,i),2);

R(i,i) = r;

w = Q(:,i)/r;

Q(:,i) = w;

for j = i+1:n

r = w’*Q(:,j);

R(i,j) = r;

Q(:,j) = Q(:,j)-r*w;

end

end

def mgs(A):

"""MGS computes reduced QR decomposition"""

from pylab import shape, zeros, eye, norm, dot

(m, n) = shape(A)

R = zeros((n,n))

scal = abs(A).max()

if scal == 0:

Q = eye(m,n)

return (Q,R)

Q = A.copy()

for i in range(n):

r = norm(Q[:,i],2)

R[i,i] = r

w = Q[:,i] / r

Q[:,i] = w

for j in range(i+1,n):

r = dot(w,Q[:,j])

R[i,j] = r

Q[:,j] = Q[:,j] - r * w

return (Q,R)

2

