
Math 665 Numerical Analysis (Bueler) March 20, 2013

Assignment # 7
Due 3 April, 2013

Please read Lectures 8, 10, 11, 12, and 13 in the textbook Numerical Linear Algebra by
Trefethen and Bau. Do these exercises:

Exercise 10.2 in Lecture 10.

Exercise 11.3 in Lecture 11.

Exercise 12.3 in Lecture 12.

P14. Recall the very basic equation of QR factorization, namely (7.6) which can be
written
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Recall also that the stages of classical Gram-Schmidt (= Algorithm 7.1) are

A =

 a1 a2 a3 . . . an

→
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→ . . . →

 q1 q2 q3 . . . qn

 = Q̂

With these hints, and comparing page 61 which describes the corresponding upper-
triangular matrices for modified Gram-Schmidt, carefully describe the upper-triangular
matrices R̄1, R̄2, . . . , R̄n so that classical Gram-Schmidt is the triangular orthogonaliza-
tion procedure

AR̄1R̄2 . . . R̄n = Q̂.

(Pleas write R̄j in terms of rij . You do not need to explain how rij is computed.) Specifically
give R̄4 in the case A ∈ C5×5. Compare to R4 for the modified Gram-Schmidt process.

P15. It is time to “reveal”, if you don’t already know it, the most important single source of
large matrix problems. The kind of differential equation problem here illustrates a general principle
that if a linear system is very large then: (1) it came from a linear system which is actually infinite
and (2) the user wanted it to be infinite but in putting it on the computer it became finite and as
big as the computer could handle.

Consider the temperature u(x, t) of a uniform solid rod of length L. If the thermal
conductivity k, linear density ρ, and heat capacity c are all constant then the temperature
might evolve in time by the equation

ρc ut = k uxx + f(x),
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where f(x) represents a time-independent (but not constant) source of heat. Here the
subscripts denote partial derivatives: ut = ∂u/∂t, etc. Let’s suppose we hold the ends of
the rod at a common fixed temperature u = 0. Then there is a steady heat distribution
U(x) which the time-dependent function u(x, t) will approach,

U(x) = lim
t→∞

u(x, t).

This limit is approached regardless of the initial distribution of temperature. The steady
state U(x) solves the differential equation “boundary value problem”

(1) 0 = k U ′′ + f(x), U(0) = 0, U(L) = 0.

(a) One may approximately solve problem (1) by the following “finite difference” tech-
nique. Choose N and an equally-spaced grid of points x0, x1, . . . , xN given by xj = j∆x
where ∆x = L/N . Denote the approximations to the actual unknown values U(xj) by Uj .
The list U1, . . . , UN−1 gives the unknowns of the problem because U0 = U(x0) = U(0) = 0
and similarly UN = U(L) = 0. One replaces the differential equation (1) by the approxi-
mation1

(2) 0 = k
Uj+1 − 2Uj + Uj−1

∆x2
+ f(xj) for j = 1, 2, . . . , N − 1.

Incorporating the already noted boundary values U0 = 0 and UN = 0, write equations
(2) as a linear system Av = b in the N = 5 case. (Of course, in this linear system v =
[U1 U2 U3 U4]

∗ ∈ C4. Don’t worry here that f(x) is not specified.)

(b) Fix L = 3, k = 1, and f(x) = exp(−20(x− 2)2) for this and the next part.
Write a MATLAB function

function [A,b] = assemble(N)

which produces A ∈ Cm×m and b ∈ Cm where m = N − 1. In the N = 5, 10, 20, 50, 500
cases, using assemble at the command line or in a script, solve the linear systems using
backslash (“\”) and display the approximate solutions as functions of x ∈ [0, 3]. (Show
them all on a single plot with x versus U axes.) Is this plot evidence of good approximation
to the exact solution U(x)? Estimate the maximum of the exact solution U(x) on [0, 3].

(c) Compute A from assemble(100); do not waste paper to show me the entries of
A. Use MATLAB to find the five eigenvectors of A which have eigenvalues closest to
zero (i.e. “lowest frequency”). Normalize these vectors so their maximum entries have
absolute value one. Plot the resulting vectors as functions of x ∈ [0, 3]. Guess formulas
for these functions. (Hint: These are the numerical versions of the Fourier modes one would
find by hand for (1) if one expanded U(x) in a Fourier series which respected the boundary values.
Your guessed functions V (x) should have the property that V ′′ is a multiple of V .)

1If you have never seen this before, a key fact is to notice that Uj+1 − 2Uj + Uj−1 = (Uj+1 − Uj)− (Uj −
Uj−1), a difference of differences, and thus that the fraction in (2) is an approximation of d2U/dx2 = U ′′.


