Assignment # 6
Due Wednesday 11/5 at start of class

Exercise 10.1.

Exercise 11.2. (a)

Exercise 11.3.

IX. What good are the orthogonal functions \(q_j(x), j = 1, \ldots, 5 \), which were the columns of \(Q \) in problem VIII? One answer is that they can sometimes help to approximately solve hard problems which relate in some manner to the functions \(e^{-jx} \). For instance:

\[\text{Problem. Find a smooth function } \hat{u}(x), \text{ defined for } x \in [0, \infty), \text{ which approximately solves} \]
\[-u''(x) + (5 + 4 \cos(x)) u(x) = 0, \quad u(0) = 1, \quad \lim_{x \to +\infty} u(x) = 0. \]

Of course, the sense of “approximation” is vague, and I will leave it so. (Try to come up with a better approximation than the one given, using only four coefficients! By the way, I do not know how to solve this problem by hand. Do you?)

(a) Argue informally that the exact \(u(x) \) satisfies \(e^{-3x} \leq u(x) \leq e^{-x} \). (Hint: Compare the problem to one with “5 + 4 cos(x)” replaced by constants. Solve those problems exactly.)

Now consider (and run!) the following MATLAB:

\[
\begin{align*}
&>> B=\text{hilb}(6); \quad B=B(1:5,2:6); \quad R=\text{ chol}(B); \\
&>> x=(0:.01:3)'; \quad A=\left[\exp(-x) \exp(-2*x) \exp(-3*x) \exp(-4*x) \exp(-5*x) \right]; \\
&>> Q=A/R; \quad \text{plot}(x,Q(:,5)), \text{ grid on} \\
&>> c=\text{roots}(\text{flipud}(R\backslash([\text{zeros}(1,4) \ 1]'))); \quad z=-\text{log}(c); \quad z' \\
&\text{ans} = \\
&\quad 0.0588 \quad 0.3241 \quad 0.8761 \quad 1.9678
\end{align*}
\]

(b) Explain why \(z \) contains the four finite solutions of \(q_5(x) = 0 \).

Suppose \(\hat{u}(x) \) is a linear combination of \(q_1(x), \ldots, q_4(x) \): \(\hat{u}(x) = \sum_{j=1}^{4} c_j q_j(x) \). A **spectral collocation method** for solving the problem above is to use the values \(z_1, \ldots, z_4 \), and the boundary condition at \(x = 0 \), to determine \(c_j \) (and thus \(\hat{u}(x) \)) by the following prescription:

\[
\begin{align*}
(1) & \quad \sum_{j=1}^{4} c_j q_j(0) = 1, \\
(2) & \quad \sum_{j=1}^{4} c_j \left(-q_j''(z_k) + (5 + 4 \cos(z_k)) q_j(z_k) \right) = 0, \quad k = 1, 2, 3, 4.
\end{align*}
\]
This is five equations, the first of which is the boundary condition, and the next four are requiring the differential equation to be true at the roots of \(q_5(x) \). As there are only four unknown coefficients, the system is overdetermined.

\((c)\) Using either a least squares method to approximately solve equations (1) and (2), or removing the \(z_4 \) equation from equations (2) and solving the resulting system, find \(c_j \) and plot the solution \(\hat{u}(x) \).

\textit{Extra Credit:}

\textbf{X (Extra Credit).} Now find some other way to approximately solve the above boundary value problem, presumably using a method (finite differences?) with lots of degrees of freedom, and compare. Explain what you do with the boundary at infinity in this context.