Assignment #3

Due Wednesday, 24 January 2010 at start of class.

These problems merely duplicate the last three slides of the online lectures,
http://www.dms.uaf.edu/~bueler/twopoint.pdf

1. Solve by-hand this ODE BVP to find \(y(x) \):

\[
y'' + 2y' + 2y = 0, \quad y(0) = 1, \quad y(1) = 0.
\]

2. Recall Example 3 in the slides, an impossible-to-solve ODE BVP. Nonetheless there are some values of \(A \) in the following problem which allow a solution: find \(y(x) \) if

\[
y'' + \pi^2 y = 0, \quad y(0) = 1, \quad y(1) = A.
\]

What values of \(A \) are allowed? For an allowed value of \(A \), how many solutions are there?

3. Equation (6) has non-constant coefficients, and essentially it cannot be solved exactly by-hand. To develop some sense of the effect of the source term \(s(x) \), solve by-hand this ODE BVP

\[
(k_0 u')' = -s(x), \quad u'(0) = 0, \quad u(L) = 0,
\]

merely assuming the source is quadratic \(s(x) = ax^2 + bx + c \) and the conductivity is constant \(k_0 > 0 \). Compute by-hand \(u(0) \). How does the solution \(u(x) \) depend on \(s(x) \)? (For example, how does \(u \) depend on the sign, values, slope, or concavity of \(s(x) \)?)

4. Apply the finite difference method to solve this ODE BVP:

\[
y'' + \sin(5x)y = x^3 - x, \quad y(0) = 0, \quad y(1) = 0.
\]

In particular, use \(J = 10 \), \(\Delta x = 1/J \), and \(x_j = j\Delta x \) for \(j = 0, \ldots, J \). Construct the system

\[
Ay = b
\]

where \(A \) is a \((J+1) \times (J+1)\) matrix, \(y = \{Y_j\} \) approximates the unknowns \(\{y(x_j)\} \), and \(b \) contains the right-side function \(x^3 - x \) in the ODE. Arrange things so that the first equation in the system represents the boundary condition \(y(0) = 0 \) and the last equation the condition \(y(1) = 0 \). The remaining equations in the system will each hold finite difference approximations of the ODE. Show me your matrix \(A \) in a non-wasteful way. Solve the system to find \(y \), and plot it appropriately. Also write a few sentences addressing how to know qualitatively and quantitatively the degree to which your answer is a good approximation.
5. (The goal of this problem is to understand shooting, though you will not quite put all parts together . . .)
Consider the nonlinear ODE BVP
\[u'' + u^3 = 0, \quad u(0) = 1, \quad u(1) = 0. \]
This problem is well-suited to the shooting method. Specifically, write a MOP program that uses an ODE solver to solve the following ODE IVP
\[u'' + u^3 = 0, \quad u(0) = 1, \quad u'(0) = A \]
for each of the eleven values \(A = -5, -4, \ldots, 4, 5 \). Plot all eleven solutions, and identify on the plot the \(A \) value for each curve. Which two \(A \) values make the computed value \(u(1) \) bracket the desired value (boundary condition) “\(u(1) = 0 \)”?
(With this information in hand you could make a program like varheatSHOOT.m, which uses bisection to converge to an \(A \) value so that \(u(1) \approx 0 \) to many-digit-accuracy.)

\[^1 \text{Possibly using the text command in MATLAB/Octave.} \]