Selected Solutions to Assignment #3

Exercise 5 (page 32 of B&C). Let \(S \) be the open set of all points such that \(|z| < 1\) or \(|z-2| < 1\).

State why \(S \) is not connected.

Proof. There are no polygonal line that connects points \((0,0)\) and \((2,0)\). Such a line necessarily crosses the line \(\{x = 1\}\), which does not belong to \(S \). (It is helpful to draw the picture.) □

Exercise 6 (page 32 of B&C). Show that a set \(S \) is open if and only if each point in \(S \) is an interior point.

Proof. (This proof follows the book’s definition. It is also possible to use the definition given in class, in which case the proof is just as short.)

Let \(S \) be open. Then by definition, it does not contain boundary points, so all points in \(S \) are interior. Let now \(S \) be a set consisting of interior points, then by definition, it is open (it does not contain boundary points). □

Exercise 9 (page 32 of B&C). Show that any point \(z_0 \) of a domain \(S \) is an accumulation point of that domain.

Proof. Consider some deleted neighborhood of \(z_0 \): \(D(z_0) = \{0 < |z - z_0| < \varepsilon\} \). This deleted neighborhood is not necessarily contained in \(S \). Since \(S \) is a domain, it is open, so there exist some \(\delta > 0 \) such that neighborhood \(B(z_0) = \{0 < |z - z_0| < \delta\} \) is contained in \(S \). Then the set \(D(z_0) \cap B(z_0) \) is not empty, so the deleted neighborhood of \(D(z_0) \) contains points from \(S \). Since \(\varepsilon \) was arbitrary, we have proven that any deleted \(\varepsilon \) neighborhood of \(z_0 \) contains points of \(S \), so \(z_0 \) is an accumulation point of \(S \). □

Exercise C3. Write

\[
f(z) = \frac{1}{1+z} + \sqrt{z}
\]

in the form \(f(z) = u(r, \theta) + iv(r, \theta) \)

Solution. Note \(z = r(\cos \theta + i \sin \theta) \). and \(\sqrt{z} = \sqrt{r}(\cos \theta/2 + i \sin \theta/2) \). We arrive at

\[
\frac{1}{1+z} + \sqrt{z} = \frac{1}{(r \cos \theta + 1) + ir \sin \theta} + \sqrt{r}(\cos \theta/2 + i \sin \theta/2)
\]

We multiply the numerator and denominator of fraction by \(r \cos \theta + 1 - ir \sin \theta \) and have that

\[
\frac{1}{1+z} + \sqrt{z} = \frac{r \cos \theta + 1 - ir \sin \theta}{(r \cos \theta + 1)^2 + (r \sin \theta)^2} + \sqrt{r}(\cos \theta/2 + ir \sin \theta/2) =
\]

\[
\left(\frac{r \cos \theta + 1}{r^2 + 1 + 2r \cos \theta} + \sqrt{r} \cos \theta/2 \right) + i \left(\frac{-r \sin \theta}{r^2 + 1 + 2r \cos \theta} + \sqrt{r} \sin \theta/2 \right)
\]

Thus

\[
u(r, \theta) = \frac{r \cos \theta + 1}{r^2 + 1 + 2r \cos \theta} + \sqrt{r} \cos \theta/2 \quad \text{and} \quad v(r, \theta) = \frac{-r \sin \theta}{r^2 + 1 + 2r \cos \theta} + \sqrt{r} \sin \theta/2.
\]
Exercise 3 (page 42 of B&C). Sketch the region onto which the sector \(r \leq 1, 0 \leq \theta \leq \pi/4 \) is mapped by the transformation

a) \(\omega = z^2 \): Solution. Upper right quarter of circle:
\[D = \{ r \leq 1, 0 \leq \theta \leq \pi/2 \} \]

b) \(\omega = z^3 \): Solution.
\[D = \{ r \leq 1, 0 \leq \theta \leq 3\pi/4 \} \]

c) \(\omega = z^4 \): Solution. Upper half of circle:
\[D = \{ r \leq 1, 0 \leq \theta \leq \pi \} \]

Exercise 5 (page 42 of B&C). Verify that the image of the region \(a \leq x \leq b, c \leq y \leq d \) under the transformation \(\omega = e^z \) is the region \(e^a \leq \rho \leq e^b, c \leq \phi \leq d \).

Proof. If \(z = x + iy \) then
\[w = e^z = e^{x+iy} = e^x e^{iy}. \]

From this we see that the line segment \([(a, c), (a, d)] \) (the left side of the rectangle) gets mapped to the curve \(\{ r = e^a, c \leq \theta \leq d \} \). Similarly, the right side of the rectangle, the line segment \([(b, c), (b, d)] \), gets mapped to the curve \(\{ r = e^b, c \leq \theta \leq d \} \). The lower side gets mapped to the curve (in polar coordinates) \([(e^a, c), (e^b, c)] \), and the upper side \([(a, d), (b, d)] \) get mapped to the curve (in polar coordinates) \([(e^a, d), (e^b, d)] \).

Exercise 8 (page 43 of B&C). Indicate graphically the vector field represented by

a) \(\omega = iz \): Solution. The picture looks like this: take some point \(z \in \mathbb{C}, z \neq 0 \). Then the vector \(\omega(z) \), “attached” to this point is a vector that can be obtained from the vector \(z \) by rotating it by \(\pi/2 \) angle, counterclockwise.

b) \(\omega = z/|z| \): Solution. For every point \(z \), the vector \(\omega(z) \) attached at this point is the unit vector, directed out of the center of coordinates.