
Math 310 Numerical Analysis, Fall 2010 (Bueler) December 14, 2010

Solutions to Assignment #9

1. I wrote these:

gaussian2.m
function z = gaussian2(f,a,b)
% GAUSSIAN2 Use n=2 Gauss-Legendre rule to approximate integral. Note
% that c_1 = c_2 = 1.
%
% Example:
% >> gaussian2(@(x) sin(x),0,pi/4)
% >> exact = 1 - sqrt(2)/2 % = 0.2928932188

sh = @(t) 0.5 * ((b-a) * t + a+b); % does shift and scale: x = sh(t)

t1 = - sqrt(3)/3; t2 = - t1;

z = 0.5 * (b-a) * (feval(f,sh(t1)) + feval(f,sh(t2)));

gaussian3.m
function z = gaussian3(f,a,b)
% GAUSSIAN3 Use n=3 Gauss-Legendre rule to approximate integral. Uses
% x1,x2,x3 and c1,c2,c3 from textbook.
%
% Example:
% >> gaussian3(@(x) sin(x),0,pi/4)
% >> exact = 1 - sqrt(2)/2 % = 0.2928932188

sh = @(t) 0.5 * ((b-a) * t + a+b); % does shift and scale: x = sh(t)

t1 = 0.7745966692; t2 = 0.0; t3 = - t1;
c1 = 5/9; c2 = 8/9; c3 = 5/9;

z = c1 * feval(f,sh(t1)) + c2 * feval(f,sh(t2)) + c3 * feval(f,sh(t3));
z = 0.5 * (b-a) * z;

Here is the integration-by-parts calculation for the exact value of the test integral:∫ 2

1
xe−x dx = −xe−x

]2
1

+

∫ 2

1
e−x dx = e−1 − 2e−2 − e−x

]2
1

= 2e−1 − 3e−2.

And comparison to results of n = 2, 3 Gaussian quadrature:

>> exact = 2 * exp(-1) - 3 * exp(-2);
>> f = @(x) x .* exp(-x);
>> [gaussian2(f,1,2); gaussian3(f,1,2)]
ans =

0.329884478631073

2

0.329753536211964
>> err = abs(ans - exact)
err =

0.000131445998026392
5.03578917843139e-07

Thus the n = 2 rule makes error about 1.3 × 10−4 while the n = 3 rule makes error about

5.0× 10−7.

2. I did this problem by-hand using long polynomial division, yielding:

Q(x) = x2 + x− 2/5, R(x) = −(2/5)x2 − (31/25)x+ 17.

Thus P (x) = Q(x)P3(x) + R(x). The degrees of Q and R are both 2, and this is ex-

pected because (degree P (x)) = (degree Q(x)) + (degree P3(x)) and because (degree R(x)) <

(degree P3(x)).

But I also checked my by-hand computation this way:

>> P = [1 1 -1 -1 -1 17];
>> P3 = [1 0 -3/5 0];
>> [Q,R] = deconv(P,P3)
Q =

1 1 -0.4
R =

-0.4 -1.24 17

Can you figure out what “ deconv” does? Do “ help conv” to start.

3. First I generated a graph which actually showed the zeros; this required brief experimen-

tation using the axis command to get a good view:

>> f = @(x) (1/63) * (63 * x.ˆ5 - 70 * x.ˆ3 + 15 * x);
>> x = -1:.001:1; plot(x,f(x)), axis([-1 1 -0.2 0.2]), grid on

The result is shown in Figure 1.

Clearly x = 0 is a root. Symmetry is clear as well, and this is all explained by factoring:

P5(x) =
1

63
x
(
63x4 − 70x2 + 15

)
.

We see that if x is a root then so is −x because the quartic factor is an even function. Thus

we only need to find the two positive roots by Newton’s method. It suffices to find the roots

of the quartic factor G(x) = 63x4 − 70x2 + 15.

From the figure, the first guesses p0 = 0.6 and p0 = 0.9 should lead in a few steps to

highly-accurate roots by Newton’s. That is what happens, as follows:

>> format long g
>> G = @(x) 63 * x.ˆ4 - 70 * x.ˆ2 + 15;
>> dG = @(x) 252 * x.ˆ3 - 140 * x;
>> p = 0.6, for k=1:5, p = p - G(p)/dG(p), end
p = 0.6
p = 0.531168831168831

3

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-1 -0.5 0 0.5 1

x

Figure 1. Plot of P5(x) to help make first guesses about roots.

p = 0.538414510614559
p = 0.538469306807752
p = 0.538469310105683
p = 0.538469310105683
>> p = 0.9, for k=1:5, p = p - G(p)/dG(p), end
p = 0.9
p = 0.906337076315242
p = 0.906179943829304
p = 0.906179845938702
p = 0.906179845938664
p = 0.906179845938664

A quick comparison to the textbook suggests Burden&Faires also believe these are roots of

P5(x).

In fact it is quite possible to check this by hand. That is because G(x) = 63x4 − 70x2 + 15

is a quadratic function of the variable z = x2. Thus

x2 =
70±

√
702 − 4(63)(15)

2(63)
= {0.28994919792569, 0.821161913185421}.

We take the square roots and get x = {0.538469310105683, 0.906179845938664}. So Newton’s

method works . . . as expected.

4. The Gaussian elimination by hand is easy here. The plot in Figure 2 is from this code

fragment; note the use of “axis off” and “text”, which you may not have seen:

x1 = -5:.1:5; x2a = -x1 / 2; x2b = x1 + 3;
plot(x1,x2a,x1,x2b), axis off, hold on
plot([-5 5],[0 0],’k’,[0 0],[-3 8],’k’)
text(5.2,0,’x_1’,’fontsize’,14), text(0,8.2,’x_2’,’fontsize’,14)

4

text(-4,3,’ intersect at (-2,1)’,’fontsize’,14)
plot(-2,1,’ro’,’markersize’,14), hold off
print -dpdf linesfigure.pdf

x1

x2

 intersect at (-2,1)

Figure 2. Intersecting lines in problem 4.

5. First I performed these row operations (Gaussian elimination):

E2 ←− E2 + E1

E3 ←− E3 − αE1

E3 ←− E3 − (1 + α)E2

The result was the system

x1 −x2 + αx3 = −2

x2 = 1

+ (1− α2)x3 = 1 + α

a. The system cannot be solved for a single (unique) solution if

1− α2 = 0.

If α = 1 then the last equation says “0x3 = 2”, which is impossible. The only value of α for

which the system has no solutions is α = 1.

b. If α = −1 then the last equation says “0x3 = 0”, which very possible because it says

nothing. When α = −1 the system after Gaussian elimination is just these two equations:

x1 −x2 −x3 = −2

x2 = 1

The set of all solutions (which was not asked for!) can be described by letting x3 = t, to

parameterize the solutions, and then:
x1x2
x3

 =


−1

1

0

+ t

1

0

1

 ∣∣∣∣ −∞ < t <∞



5

In any case, the only value of α for which the system has ∞ly-many solutions is α = −1.

c. Now we proceed to solve the system by backward substitution, in the (generic) cases in

which 1− α2 6= 0:

x3 =
1 + α

1− α2
=

1

1− α
,

x2 = 1,

x1 = +x2 − αx3 − 2 = −1− α

1− α
= − 1

1− α
.

By the way, I checked my work in Matlab/Octave with one-liners which compared the

original system, for a specific value of α, with the system after Gaussian elimination and with

my final answer in part (c). I did several values of α. One example looked like this:

>> alpha=5; A = [1 -1 alpha; -1 2 -alpha; alpha 1 1]; b = [-2 3 2]’; (A \ b)’

ans =

0.25 1 -0.25

>> alpha=5; U = [1 -1 alpha; 0 1 0; 0 0 (1-alphaˆ2)]; c = [-2 1 (1+alpha)]’; (U \ c)’

ans =

0.25 1 -0.25

>> alpha=5; x = [-1/(1-alpha) 1 1/(1-alpha)]

x =

0.25 1 -0.25

6. Very easy, and easy to check.

7. a. I wrote the following working code:

forwardbueler.m
function x = forwardbueler(A,b)
% FORWARDBUELER Solve lower triangular system by forward substitution.
% Check the size of the inputs, and does checks before division by zero.
% Also checks that the input matrix A is lower triangular.
%
% Example:
% >> A = tril(randn(3,3)) % lower triangular 3x3 matrix
% >> b = randn(3,1)
% >> x = forwardbueler(A,b)
% >> A * x - b % should be nearly zero

[n,m] = size(A); % for any size of matrix, but must be square (mxm)
if m ˜= n, error(’A must be square (n x n)’), end
if max(max(abs(triu(A,1))))>0, error(’A must be lower triangular’), end

[p,q] = size(b);
if q ˜= 1, error(’b must be a column vector’), end
if p ˜= n, error(’b must be have same number of rows as A’), end

x = zeros(size(b)); % create x as a column vector like b

if A(1,1) == 0.0, error(’zero in A(1,1) position’), end
x(1) = b(1) / A(1,1);

6

for i = 2:n
if A(i,i) == 0.0, error(’zero in A(%d,%d) position’,i,i), end
% next line does dot product of i-1 values:
x(i) = (b(i) - A(i,1:i-1) * x(1:i-1)) / A(i,i);

end

In writing the code we see we must assume that each diagonal entry aii is nonzero, if we

are to have a unique solution.

b. With the way I wrote it, here are the counts:

additions: (1/2)n2 − (3/2)n+ 1

subtractions: n− 1

multiplications: (1/2)n2 − (1/2)n

divisions: n

I computed the number of multiplications done in the dot products by doing the sum

n∑
i=2

i− 1 =
n−1∑
j=1

j =
(n− 1)n

2
= (1/2)(n2 − n).

The number of additions done in the dot products is one less per dot product:

n∑
i=2

i− 2 =
n−2∑
j=1

j =
(n− 2)(n− 1)

2
= (1/2)(n2 − 3n+ 2).

The total number of arithmetic operations is n2 + 1.

(Other answers may be correct, because one may do subtraction instead of addition, but the

number of divisions and multiplications should be these as stated.)

