(Bueler; created November 19, 2010)

Assignment #8

Due Monday 29 November at start of class.

Read sections 4.5 and 4.7 in the textbook (Burden & Faires, 9th ed.).

1. (*Do this "by-hand", using* MATLAB/OCTAVE *as a calculator when needed, but showing major steps.*) Use Romberg integration to compute $R_{3,3}$ for the integral

$$\int_0^1 x^2 e^{-x} \, dx.$$

Compare to the exact value.

2. Write a MATLAB/Octave program that implements Algorithm 4.2, Romberg integration. The inputs should be f (a function), limits a and b, and an integer n, which is the number of rows of the Romberg table $(R_{k,j})$ to compute. The output is the Romberg approximate integral $R_{n,n}$, an estimate of the integral $\int_a^b f(x) dx$. Demonstrate your routine on the integral

$$\int_{-1}^{2} (\cos x)^3 \, dx$$

using n = 3 and n = 7, and give the actual errors. Finally, in the n = 3 case show the whole triangular Romberg table $\{R_{k,j}\}$ which your program generates. (Your program generates the Romberg table row-by-row, so you can just have the program print out the rows as it goes. But make it clear to me which row is which.)

Extra Credit. Write a version of the above routine which accepts a *tolerance TOL*, instead of *n*, and runs the Romberg method until some accuracy estimate is satisfied. Explain your accuracy estimation method in a few complete sentences, e.g. as documentation in the program.

3. (An extrapolation method for interpolation. Like Romberg, but not for the same purpose.) Consider the problem of interpolating $f(x) = \cos(3x)$ on the interval [0,4]. Let h = (4-0)/N, and consider equally-spaced N degree (thus N + 1 point) polynomial interpolation of f(x). More specifically, consider using these polynomials $P_N(x)$ to approximate $f(\pi) = -1$.

(a) Show, on *h*-versus- $P_N(\pi)$ axes, a plot of the successive approximations $P_N(\pi)$ to $f(\pi)$. Use N = 1, 2, 4, 8, 16.

(b) Think of $P_N(\pi)$ as a function of h: $F(h) = P_N(\pi)$. Use the data in part (a) to extrapolate this function to zero to get $F(0) = P_{\infty}(\pi)$. How accurate is your result?

(c) Speculate/comment on whether this method is promising for interpolation. How efficient is it? (*Compared to what*?) How could you know in advance how accurate it is?

Extra Credit. Repeat the above problem but do it with Chebyshev spacing. (You will have to think about the meaning of "h".)

4. Approximate the following integrals using Gaussian quadrature with n = 2, and compare your results to the exact values of the integrals.

(a)
$$\int_{1}^{1.5} x^2 \ln x \, dx$$
, (b) $\int_{1}^{1.6} \frac{2x}{x^2 - 4} \, dx$

- **5**. Repeat the above exercise with n = 3 Gaussian quadrature.
- **6**. Determine constants *a*, *b*, *c*, *d* that will produce a quadrature formula

$$\int_{-1}^{1} f(x) \, dx = af(-1) + bf(1) + cf'(-1) + df'(1)$$

that has degree of precision 3.