
Math 310 Numerical Analysis, Fall 2010 (Bueler) December 4, 2010; REVISED VERSION (problem #6)

corrected Solutions to Assignment #7

1. I wrote a code that solves parts (a) and (b) of this problem, and also does problem 5:

easyintegrals.m
% EASYINTEGRALS Do some integrals for Assignment # 7.

% problem 1a

format long g

fa = @(x) cos(x).ˆ2;

trap1a = (0.5/2) * (fa(0) + fa(0.5)) % Trapezoid

simp1a = (0.25/3) * (fa(0) + 4 * fa(0.25) + fa(0.5)) % Simpson’s

mid1a = (0.5) * fa(0.25) % Midpoint

exact1a = 0.460367746

% problem 1b; same order of rules

fb = @(x) x .* log(1+x);

trap1b = (0.5/2) * (fb(-0.5) + fb(0))

simp1b = (0.25/3) * (fb(-0.5) + 4 * fb(-0.25) + fb(0))

mid1b = (0.5) * fb(-0.25)

% problem 2 actual errors

trapactualerr2 = abs(trap1a - exact1a)

simpactualerr2 = abs(simp1a - exact1a)

midactualerr2 = abs(mid1a - exact1a)

% problem 5; composite Trapezoid and Simpson’s, implemented using loops

n = 10; h = 0.5 / n;

sum5T = fa(0);

sum5S = sum5T;

for j = 1:n-1

x = 0 + j * h;

sum5T = sum5T + 2 * fa(x);

if abs(mod(j,2)) < 0.5, sum5S = sum5S + 2 * fa(x);

else, sum5S = sum5S + 4 * fa(x); end

end

sum5T = sum5T + fa(0.5);

sum5S = sum5S + fa(0.5);

comptrap5 = (h/2) * sum5T

compsimp5 = (h/3) * sum5S

trapactualerr5 = abs(comptrap5 - exact1a)

simpactualerr5 = abs(compsimp5 - exact1a)

Running it gives:

>> easyintegrals

trap1a = 0.442537788233517

simp1a = 0.460443023059568

mid1a = 0.469395640472593

exact1a = 0.460367746

trap1b = 0.0866433975699932

simp1b = 0.0528546385609795

2

mid1b = 0.0359602590564726

trapactualerr2 = 0.0178299577664826

simpactualerr2 = 7.52770595679464e-05

midactualerr2 = 0.00902789447259311

comptrap5 = 0.460192410522105

compsimp5 = 0.460367863212223

trapactualerr5 = 0.000175335477895111

simpactualerr5 = 1.1721222253902e-07

Thus for the integral in part (a) I get 0.44254, 0.46044, 0.46939, for Trapezoid, Simpson’s, and

Midpoint rules, respectively. For part (b) I get 0.086643, 0.052855, 0.035960 respectively.

2. For part (a) the function is f(x) = cos2 x = 0.5(1 + cos 2x) so f ′(x) = − sin 2x, f ′′(x) =

−2 cos 2x, f ′′′(x) = +4 sin 2x, and f (4)(x) = +8 cos 2x. The error formula for Trapezoid rule is ET (h) =

−(1/12)h3f ′′(ξ) and h = 0.5 so

|ET (h)| = (0.53/12) 2| cos(2ξ)| ≤ 1/48 = 0.0208 = 2.08× 10−2.

For Simpson’s h = 0.25 and ES(h) = −(1/90)h5f (4)(ξ) so

|ES(h)| = (0.255/90) 8| cos(2ξ)| ≤ 8/(4590) = 8.68× 10−5.

For Midpoint h = 0.5 and EM (h) = +(1/3)h3f ′′(ξ) so

|EM (h)| = (0.53/3) 2| cos(2ξ)| ≤ 1/12 = 0.0833 = 8.33× 10−2.

In each case I have simply used | cos θ| ≤ 1.

How do these compare to the actual errors? For Trapezoid we have (actual) = 1.78 × 10−2 =

|ET (h)| ≤ 2.08 × 10−2. The estimate exceeds the actual error, as it must, but the estimate is very

good. For Simpson’s we have (actual) = 7.53× 10−5 = |ES(h)| ≤ 8.68× 10−5, again a good estimate.

Finally for Midpoint we have (actual) 9.02 × 10−3 = |EM (h)| ≤ 8.33 × 10−2, a rather poor estimate.

This shows that sometimes the methods can be quite good because, like in the case of Midpoint here,

the integrand happens to be evaluated at a “just right” location for estimating its area.

3. Here h = 2 for both Trapezoid and Midpoint rules. Thus, as noted in class, we know that

(2/2) (f(0) + f(2)) = 5 and that 2 (f(1)) = 4. It follows that f(0)+f(2) = 5 and f(1) = 2. This allows

us to evaluate Simpson’s rule, in which h = 1:

1

3
(f(0) + 4f(1) + f(2)) =

1

3
([f(0) + f(2)] + 4[f(1)]) =

1

3
([5] + 4[2]) =

13

3
= 4.33333.

4. We try the rule on successive powers of x:

2 =

∫ 1

−1
x0 dx

X
=

(
−
√

3

3

)0

+

(√
3

3

)0

= 2

0 =

∫ 1

−1
x1 dx

X
=

(
−
√

3

3

)1

+

(√
3

3

)1

= 0

2

3
=

∫ 1

−1
x2 dx

X
=

(
−
√

3

3

)2

+

(√
3

3

)2

=
3

9
+

3

9
=

2

3

0 =

∫ 1

−1
x3 dx

X
=

(
−
√

3

3

)3

+

(√
3

3

)3

= 0

2

5
=

∫ 1

−1
x4 dx 6=

(
−
√

3

3

)4

+

(√
3

3

)4

=
9

81
+

9

81
=

2

9

3

Thus the rule has degree of precision three, which is very impressive because it evaluates the integrand

the same number of times as the Trapezoid rule, namely twice, but the Trapezoid rule has degree of

precision one!

So: Is this rule really better than Simpson’s? (

� ��
��
� � �
? I mean Simpson’s rule!)

Where did this rule come from? (Google it?) Can we do better with two evaluations? Are there rules

which evaluate the integrand 3 times like Simpson’s but have much higher precision? These are all good

questions . . .

5. Done in the code in problem 1. Note that the two methods evaluate the integrand the same

number of times, but the Simpson’s error 1.17× 10−7 is about three orders of magnitude smaller than

the Trapezoid error 1.75× 10−4.

6. CORRECTED SOLUTION. For composite Trapezoid rule the error formula says EcT (h) =

−((b− a)/12)h2f ′′(ξ) so with b− a = 0.5 and h = 0.5/n we have

|EcT (h)| = 0.5(0.52)

12n2
(2| cos 2ξ|) ≤ 1

48n2
.

We seek n so that the error is less than 10−13 so we solve the inequality 1/(48n2) ≤ 10−13. This gives

n2 ≥ 2.0833 × 1011 or n ≥ 4.56435 × 105. Thus n = 456436 would suffice. This means about half a

million function evaluations.

For composite Simpson’s rule, EcS(h) = −((b− a)/180)h4f (4)(ξ). Thus with h = 0.5/n (again!) we

seek n so that

|EcS(h)| = 0.5(0.54)

180n4
8| cos 2ξ| ≤ 1

720n4
≤ 10−13.

This gives n ≥ 343.29. Thus n = 344 would suffice, noting n does need to be even for Simpson’s rule.

This represents far fewer function evaluations than for Trapezoid, by a factor of more than 1000.

We see that Simpson’s is a very good idea for the right kind of integral.

A. I wrote this code, which produced Figure 1:
snoopy.m

% SNOOPY Plot the upper side of the noble beast.

x1 = [1 2 5 6 7 8 10 13 17];

y1 = [3.0 3.7 3.9 4.2 5.7 6.6 7.1 6.7 4.5];

x2 = [17 20 23 24 25 27 27.7];

y2 = [4.5 7.0 6.1 5.6 5.8 5.2 4.1];

x3 = [27.7 28 29 30];

y3 = [4.1 4.3 4.1 3.0];

xx1 = 1:.01:17; % dense points for plotting

xx2 = 17:.01:27.7; % ditto

xx3 = 27.7:.01:30; % ditto

subplot(411) % make plot aspect ratio close to original

set(0,’defaultlinelinewidth’,1.5,’defaultlinemarkersize’,4)

plot(xx1, ncspline(x1,y1,xx1), ’b’, x1, y1, ’bo’, ...

xx2, ncspline(x2,y2,xx2), ’g’, x2, y2, ’go’, ...

xx3, ncspline(x3,y3,xx3), ’r’, x3, y3, ’ro’)

title(’noble beast’), grid on, xlabel x, ylabel(’f(x)’)

B. The full program I wrote is at http://www.dms.uaf.edu/~bueler/hand.m. I followed Moler’s

advice from Numerical Computing with MATLAB, on his exercise 3.4. I got the points by clicking the

mouse. I ended up with 39 clicks, captured this way:

http://www.dms.uaf.edu/~bueler/hand.m

4

3

4

5

6

7

8

0 5 10 15 20 25 30

f(
x)

x

noble beast

Figure 1. Plot from given data (circles) interpolated with three natural cubic splines.

>> figure(’position’,get(0,’screensize’)) % figure fills whole screen

>> axes(’position’,[0 0 1 1]) % treat axes as 0<x<1, 0<y<1

>> [x,y]=ginput; % record mouse click location until

% enter is pressed

Then I used a “fake” t-axis with 1 ≤ t ≤ 39. And ran this code:

t = 1:39; % "fake" t-axis for parameterized curve is just the point index

tt = 1:.01:39; % fill-in for smooth plot

xx = ncspline(t,x’,tt);

yy = ncspline(t,y’,tt);

plot(xx,yy,’g-’,x,y,’bo’)

axis off % show no axes labels, tick marks, grid, ...

The result is in Figure 2.

Figure 2. My hand, drawn smoothly from 39 marked points, using natural cubic splines.

