
Math 310 Numerical Analysis, Fall 2010 (Bueler) October 24, 2010

Solutions to Assignment #5

1. This is a good place to reveal that the Vandermonde matrix method is built into Mat-
lab/Octave. Specifically, I will do all three parts using “polyfit” and “polyval”. The former
finds coefficients of the interpolating polynomial, given the interpolation points and the degree,
and the latter evaluates the polynomial at a given point (or list of points).

a.

>> x = [1 1.25 1.6];
>> f = @(x) sin(pi * x);
>> P = polyfit(x,f(x),2);
>> f(1.4), polyval(P,1.4), abs(polyval(P,1.4) - f(1.4))
ans = -0.951056516295154
ans = -0.918228061740598
ans = 0.0328284545545553

b.

>> f = @(x) log10(3*x-1);
>> P = polyfit(x,f(x),2);
>> f(1.4), polyval(P,1.4), abs(polyval(P,1.4) - f(1.4))
ans = 0.505149978319906
ans = 0.507122062831104
ans = 0.00197208451119779

c.

>> f = @(x) (x-1).ˆ(1/3);
>> P = polyfit(x,f(x),2);
>> f(1.4), polyval(P,1.4), abs(polyval(P,1.4) - f(1.4))
ans = 0.736806299728077
ans = 0.816944670038153
ans = 0.0801383703100754

So, how are polyfit/polyval implemented? You may think of them as being these codes, which
should be quite understandable.

polyfitbyed.m
function P = polyfitbyed(x,y,n)
% POLYFITBYED Re-implementation by Ed of the built-in polyfit.
% This version is more limited than built-in polyfit because
% only the degree = (number of points - 1) case is covered.
%
% Example of comparison:
% >> x = [1 2 5 6]
% >> polyfit(x,sin(x),3)
% >> polyfitbyed(x,sin(x),3)
%
% See also: POLYVALBYED

if length(x) ˜= (n+1), error(’number of points must be n+1’), end
if length(y) ˜= (n+1), error(’number of points must be n+1’), end
y = y(:); % makes y into a column vector



2

A = vander(x);
P = (A \ y)’;

polyvalbyed.m
function y = polyvalbyed(P,x)
% POLYVALBYED Re-implementation by Ed of the built-in polyval.
% It is essentially the same as FASTEVAL, which is to say
% it is an implementation of Horner’s method, except for
% reordering the coefficients to match POLYFIT/POLYVAL.
%
% Example:
% >> x = [0.0 0.1 0.2 0.3 0.4]; P = polyfitbyed(x,sin(x),4)
% >> polyvalbyed(P,0.25)
% You can compare this result to that from the POLYFIT/POLYVAL pair.
%
% See also: POLYFITBYED

n = length(P) - 1;
y = P(1);
for j=2:n+1
y = P(j) + x * y;

end

2. a. Here n = 2 and f ′′′(x) = −π3 cos(πx). Thus the Lagrange Remainder Theorem (LRT)
says

|P (1.4)− f(1.4)| =
∣∣∣∣−π3 cos(π ξ(1.4))

3!
(1.4− 1)(1.4− 1.25)(1.4− 1.6)

∣∣∣∣
=
π3

6
| cos(π ξ(1.4))|(0.4)(0.15)(0.2) ≤ π3

6
· 1 · (0.4)(0.15)(0.2) = 0.062.

The actual absolute error computed in 1a. is 0.033, so we are in good shape.

b. Again n = 2. Now f ′(x) = (3/ ln 10)(3x − 1)−1 so f ′′′(x) = (54/ ln 10)(3x − 1)−3. The
LRT says

|P (1.4)− f(1.4)| =
∣∣∣∣(54/ ln 10)(3 ξ(1.4)− 1)−3

3!
(1.4− 1)(1.4− 1.25)(1.4− 1.6)

∣∣∣∣
≤ 54

(ln 10)(8)(6)
(0.4)(0.15)(0.2) = 0.0059.

All we know about ξ(1.4) is that it is in the interval [1, 1.6]. Thus we have |3ξ(1.4) − 1| ≥
|3 · 1− 1| = 2 so |3ξ(1.4)− 1|−3 ≤ 2−3 = 1/8.

The actual absolute error computed in 1a. is 0.0020, so again we are in good shape.

c. Not graded. As described in class, the LRT does not apply because f /∈ C3[1, 1.6]. Indeed
f ′(x) does not exist at x = 1, and f ′(x) is unbounded on [1, 1.6].

3. (This problem was merely included to give you a break from the LRT, and remind you to
think of different “how-to” methods, perhaps.)

It seems to me that what we know can be described this way:
1 0 02 03

1 0.5 0.52 0.53

1 1 12 13

1 2 22 23



a0
a1
a2
6

 =


0
y
3
2


That is, we start with P (x) = a0 + a1x + a2x

2 + a3x
3 but we note a3 = 6, and we “think

Vandermonde”.
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But in fact the 1st, 2nd, and 4th equations form a system of three equations in three unknowns:1 0 02

1 1 12

1 2 22

a0a1
a2

 =

 0
3− 6
2− 48

 =

 0
−3
−46


Solving this with Matlab/Octave in the obvious way gives a0 = 0, a1 = 17, and a2 = −20.
But then P (x) = 17x− 20x2 + 6x3 and so

y = P (0.5) = 17(0.5)− 20(0.5)2 + 6(0.5)3 = 4.25.

4. As mentioned in class, Neville’s method was already online; here it is:
nev.m

function y = nev(xx,n,x,Q)
% NEV Neville’s algorithm as a function
% y= nev(xx,n,x,Q)
% inputs:
% n = order of interpolation (n+1 = # of points)
% x(1),...,x(n+1) x coords
% Q(1),...,Q(n+1) y coords
% xx=evaluation point for interpolating polynomial p
% output: p(xx)
%
% example:
% >> x = [0 0.1 0.4 0.5]; % n=3 case with n+1=4 points
% >> y = cos(x);
% >> P = nev(0.187654321,3,x,y) % value of polynomial P(xx)
% >> f = cos(0.187654321) % value of function f(xx)

for i = n:-1:1
for j = 1:i

Q(j) = (xx-x(j))*Q(j+1) - (xx-x(j+n+1-i))*Q(j);
Q(j) = Q(j)/(x(j+n+1-i)-x(j));

end
end

y = Q(1);

a. Here we note that 20.5 =
√

2. Thus we approximate f(0.5) =
√

2 by computing P (0.5)
by using Neville’s method:

>> x = -2:2;
>> nev(0.5,4,x,2.ˆx)
ans = 1.412109375

b. Here
√

2 = f(2). Thus we approximate f(2) =
√

2 by computing P (2) by using Neville’s
method:

>> x = [0 (1/3) 1 3 4];
>> nev(2,4,x,sqrt(x))
ans = 1.17398999244855

c. The result in part a. is a lot more accurate. Why? Probably because, unlike f(x) =
√
x,

there are no singularities in the derivatives of f(x) = 2x. By contrast, f(x) =
√
x is not in

C(n+1)[a, b] on any interval [a, b] including x = 0, for n ≥ 0.

5. a. I wrote and then ran the obvious program using the Vandermonde matrix method:
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erfintegrand.m
function v = erfintegrand(t);
% ERFINTEGRAND Computes the coefficients of the 8th degree polynomial
% interpolant of f(t) = eˆ{-tˆ2}. Input t = (interpolation points).
% Example, to solve 5(a):
% >> erfintegrand(0.0:0.1:0.8)

A = fliplr(vander(t)); % Vandermonde matrix with preferred order
y = exp(-t.ˆ2);
v = (A \ y’)’;

>> erfintegrand(0.0:0.1:0.8)
ans =
Columns 1 through 6:

1.0000e+00 6.7672e-06 -1.0002e+00 1.9747e-03 4.8881e-01 3.6910e-02
Columns 7 through 9:
-2.3941e-01 8.2233e-02 -2.4125e-03

Thus

P (t) = 1 + 6.7672× 10−6x− 1.0002x2 + 0.0019747x3 + 0.48881x4

+ 0.036910x5 − 0.23941x6 + 0.082233x7 − 0.0024125x8

b. We apply the L.R.T. with n = 8 and get:

|P (t)− f(t)| =

∣∣∣∣∣f (9)(ξ(t))9!
(t− 0.0)(t− 0.1) . . . (t− 0.8)

∣∣∣∣∣ .
But what is the 9th derivative of f(t) = exp(−t2)? This is a job for a computer program

that differentiates the same way you do, but faster and with fewer errors. For example, Wol-
framAlpha, which we can treat as an online-interface to Wolfram Mathematica.

Specifically, I went to
http://www.wolframalpha.com

and typed in, verbatim, “9th derivative of f(t)=exp(-t^2)”. I got Figure 1. (Before the
era of the internet 2.0, one could always look in a table or ask an expert; e.g. go to the
“Hermite polynomials” Wikipedia page and you will get what has been in printed tables
for about 150 years.)

O.k. That worked! Now we know

f (9)(t) = −32 exp(−t2)t(16t8 − 288t6 + 1512t4 − 2520t2 + 945).

Note that ξ(t) is in [0, 0.8]. And we observe that∣∣∣f (9)(t)∣∣∣ = 32 exp(−t2)|t|
∣∣16t8 − 288t6 + 1512t4 − 2520t2 + 945

∣∣
≤ 32 exp(−t2)|t|

(
16|t|8 + 288|t|6 + 1512|t|4 + 2520|t|2 + 945

)
≤ 32 · 1 · (0.8)

(
16 0.88 + 288 0.86 + 1512 0.84 + 2520 0.82 + 945

)
= 83335.6

for any 0 ≤ t ≤ 0.8. Returning to the bound, it follows that if 0 ≤ t ≤ 0.8 then

|P (t)− f(t)| =
∣∣f (9)(ξ(t))∣∣

9!
|t− 0.0||t− 0.1| . . . |t− 0.8|

≤ 83335.6

362880
0.45 0.84 = 0.00096 ≤ 10−3.

http://www.wolframalpha.com
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Figure 1. Screenshot. I asked WolframAlpha for the 9th derivative of f(t).

At the last estimate step I have used the logic that if t ∈ [0, 0.8] then the distance from t either
to any one of the left half, or any one of the right half, of the interpolation points is at most
half of the length of the interval, namely |t − tj | ≤ 0.4 for j = 0, 1, 2, 3, 4 or for j = 4, 5, 6, 7, 8.
The remaining points could be “far” from t, however: |t− tj | ≤ 0.8 for all j.

Thus max0≤t≤0.8 |P (t)− f(t)| ≤ 10−3. This turns out, not surprisingly, to be a conservative
estimate.

c. and d. Yes, I do know how to integrate a polynomial:

If P (t) =
8∑

j=0

aj x
j then one antiderivative is Q(t) =

8∑
j=0

aj
j + 1

xj+1.

That is, you integrate polynomials by shifting the power by +1 and remembering to divide the
coefficients by the new powers. So I wrote a program which uses the output of erfintegrand.m
above:

erfbyed.m
function y = erfbyed(x)
% ERFBYED Compute approximation to
%
% 2 /x
% erf(x) = --------- | exp(-tˆ2) dt
% sqrt{pi} /0
%
% using the antiderivative of the degree 8 polynomial P(t) found by
% equally-spaced polynomial interpolation of f(t) = exp(-tˆ2)
% on the interval [0.0,0.8]. Therefore this should only be used for
% inputs 0 <= x <= 0.8.
%
% Example. Compare to the built-in "erf"; relative error:
% >> erfbyed(0.8)
% >> abs( erfbyed(0.8) - erf(0.8) )
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P = erfintegrand(0:0.1:0.8); % coefficients of P(t)
Q = [0 P./(1:9)]; % coefficients of Q(t) = \int P(t) dt
y = (2 / sqrt(pi)) * fasteval(Q,x);

This program uses the fasteval.m code written in-class. That is, we evaluate the polynomial
by Horner’s method. It is online at

http://www.dms.uaf.edu/~bueler/fasteval.m

Running erfbyed.m, and doing part d. along the way,

>> erfbyed(0.8)
ans = 0.742100965073977
>> erf(0.8)
ans = 0.742100964707661
>> abs( erfbyed(0.8) - erf(0.8) )
ans = 3.66316199595929e-10

Thus we have about 9 digits correct, if we are to believe the built-in erf.
Somewhat incidentally, along the way we got

Q(t) = t+ 3.38359× 10−6 t2 − 0.33339 t3 + 0.00049367 t4 + 0.097762 t5

+ 0.0061517 t6 − 0.034201 t7 + 0.010279 t8 − 0.00026806 t9.

Note that Q(0) = 0 because we have chosen the antiderivative with zero constant term. But who
cares about the specific Q(t)? We already have the pattern by which to integrate polynomials,
and we have correctly applied it inside the program. So the particular Q(t) is not actually worth
recording . . .

e. From part b. we have
|P (t)− f(t)| ≤ 10−3

for every t ∈ [0, 0.8]. But if F (x) = (2/
√
π)Q(x) then

|F (x)− erf(x)| = 2√
π

∣∣∣∣∫ x

0
P (t)− f(t) dt

∣∣∣∣ ≤ 2√
π

∫ x

0
|P (t)− f(t)| dt

≤ 2√
π

∫ x

0
10−3 dt =

2× 10−3√
π

x

if 0 ≤ x ≤ 0.8.
Note that the last inequality only applies for x ∈ [0, 0.8] because we need the entire interval of

integration, t ∈ [0, x], to be inside the interval on which we know P (t) is close to f(t).
For our particular case, we have

|F (0.8)− erf(0.8)| ≤ 2× 10−3√
π

0.8 = 0.00090.

From part d. we certainly believe this bound, but it is far too pessimistic. We have about 5
orders of magnitude more accuracy than the amount we can estimate in advance. But the “big
deal” in numerical analysis is knowing in advance that a certain accuracy is achieved.

http://www.dms.uaf.edu/~bueler/fasteval.m

