Math 310 Numerical Analysis, Fall 2010 (Bueler) October 15, 2010

Solutions to Assignment #4

1. a. f(p)=p*+2p®>—p—3=0 can be re-arranged to
4
pt=3+p-2" o p=@B+p-2°)"

Thus f(p) = 0 if and only if p is a fixed point of ¢;(z) = (3 +x— 2m2)1/4. Here are 20 iterations:

>> gl = 0(x) (3+x-2*x"2)"(1/4)
>> format long g
> p =1, for n=1:20, p = gl(p), end

p = 1
p = 1.18920711500272
p = 1.08005775266756
p = 1.12410508074685
p = 1.12413407454347
p = 1.12411623301991

This at least looks like it is converging to a fixed point.
b. Similarly, f(p) = 0 can be rewritten

2> =p+3—p or p:< 5

Thus f(p) = 0 if and only if p is a fixed point of ga(z) = ((z + 3 — 2%)/2) Y2 Here are 20 iterations:

>> g2 = @(x) ((x+3-x74)/2)"(1/2);

>> p =1, for n=1:20, p = g2(p), end
p = 1

P 1.22474487139159

= 0.957226754592156
= 1.24852955693609
0.953569842385412
= 1.25035027839163
= 0.950317401707698
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This looks like some kind of oscillation, which is growing in magnitude.

c. Just from the above info, g;(z) seems more promising. (Given the theory we know, we
should expect that |g}(1.1241)| < 1 while |g5(1.1241)| > 1. You can check that this is true.)

2. a. First, ¢'(x) = cosz so on the interval [2, 3], we know g(z) is decreasing because cosx < 0
on this interval. Because g(x) is decreasing on this interval we need only check that g(2) and g(3)
are in the interval [2,3] in order to know that g(z) is in [2, 3] for all z € [2,3]. But g(2) = 2.9093
while g(3) = 2.1411. Thus g(z) € [2,3] if z € [2,3].

Now,

max |¢'(z)| = max |cosz| = |cos 3| = 0.98999.
2<z<3 2<z<3



2

Let k = 0.99 < 1. Because g is continuous and |¢'(z)| < k < 1 on the interval [2, 3], by theorem 2.3
there is a unique fixed point on this interval. Furthermore we see that by theorem 2.4 the iteration
Prn = g(pn—1) will converge for any starting point pp in the interval [2, 3].

Finally, it is easy to see that f(p) = 2+sinp —p = 0 can be manipulated to p = g(p) = 2 +sinp.

b. Here ¢'(z) = (2/3) (2z 4+ 5)~ /3. This is always positive if € [2,3] so g(z) is increasing.
But g(2) = 2.0801 and g(3) = 2.2240 so g(z) € [2,3] if € [2,3]. On the other hand,

2 2 —1/3
"(z)] = Cr+5)" =2 min 20 +5 — 2(2(2) +5)"/3 = 0.32050.
Jnax lg'(z)] Jnax. (2z +5) 3\ min, 27+ 5 (2(2) +5)

Let k = 0.33. Then |¢'(x)] < k < 1if 2 € [2,3] so by theorem 2.3 there is a unique fixed point
p = ¢g(p) and by theorem 2.4 the iteration p, = g(p,—1) will converge for any starting point
po € [2,3]. Finally, it is easy to see that f(p) = p> — 2p — 5 can be manipulated to p® = 2p + 5 or
p=g(p) = (2p+5)"".

3. A function with the desired properties could be discontinuous, and have slope greater than
one (in magnitude) at the fixed point, but still have only one fixed point. For example,

1—-(2/0.6), 0<z<0.6,
o) =0 0O
0.2, 0.6 <z <1.

Here g(z) is defined for all € [0,1], and g(z) € [0,1] if z € [0,1], but ¢g has the properties just
mentioned. See Figure 1. The figure is generated by the next code, which can only be of interest
as an illustration of plotting commands.

‘ uniquefixed.m ‘
% UNIQUEFIXED Plot piecewise linear function.

clf, x=0:0.001:0.6; plot(x,1.0 — (1.0/0.6)xx)

hold on, x=0.6:.001:1.0; plot(x,0.2+0nes(size(x)))

plot ([0 0.6 1.0]1,[1.0 0.0 0.2],"0",'markersize’,6,’linewidth’,6.0)
plot(0.6,0.2,”’0", 'markersize’,10,’ linewidth’,1.5)

x=0:0.001:1.0; plot(x,x,'g")

axis ([0 1 0 11), xlabel x, ylabel vy, hold off, axis equal

% print -dpdf uniquefixed.pdf
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FIGURE 1. Plot of y = g(x) for a piecewise constant g(x) which is not continuous
and which has slope greater than one in magnitude at the fixed point p = g(p).
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4. Here g(z) = (/2) 4+ 7/(2z). The number p is a fixed point of g if and only if the following
equivalent statements are true:

1 7 7
p=—-p+ — or 2p—p=-— or pr =T
2 2p P
or p = ++/7. Consider the derivative at the positive fixed point:
1 7 1 7
/ e / 7 = - — — = 0

In fact, for any 2 < z < V7 we have
; 1 7 1 7 1/7 1
9 ()l ’2 22| ~ 2|0 2Z|” 2\ =9
while for any =z > V7 we have
1 7 1 1
=5 (1- %) <50-0-3

z2) — 2

Thus on the interval [2, 00] we have |¢/(z)| = 5. Also g(z) € [2,00) if @ € [2,00). Thus by theorem
2.4 there is a unique fixed point on the interval [2, oo, which we already know is p = V7, and the
iteration x,, = g(x,—1) converges to it for any xy > 2.
Comment. Consider the root-finding problem f(x) = 22 — 7 = 0. Apply Newton’s method:
f(zn-1) R e 1 7

f(xn—-1) Tt 2n1  2mny  2Tn1 g1 * 201

Tp = Tn—-1 —

Thus the above argument shows Newton’s method works (converges) for any starting point z¢ > 2.

5. Here Newton’s method is:

fony) _ —Pp 1 — €08(Pn—1)
Flon—1) 7" =3pp_y +sin(pa-1)

Using MATLAB/OCTAVE to find ps given pg = —1:

Pn = Pn—-1 —

>> g = 0(x) x - (-x"3-cos(x))/(-3*x"2+sin(x));
>>p = -1;

>> p = g(p)

p = -0.88033

>>p = g(p)

p = -0.86568

Thus po = —0.86568, approximately. If we attempt pg = 0 we get:

>>p=0; p=glp
warning: division by zero
p = Inf

Of course, the reason for difficulties should be obvious: f’(0) = 0.

6. In these exercises I start by checking I have a bracket on the given interval. We see the secant
method converges almost as fast as Newton’s. I know I have 1075 accuracy because the iterations
agree to 14 digits.

a.



>> f = 0(x) exp(x) - 2.7(-x) + 2 * cos(x) - 6;
>> [£(1) f(2)]
ans =

-2.70111355980468 0.306762425836365
>> df = @(x) exp(x) + log(2) * 2.7(-x) - 2 * sin(x);
>> p=1.8, for n=1:5, p=p - £(p) / df(p), end % Newton’s
p = 1.8
p = 1.96087660418324
P = 1.94465320885678
P = 1.94446250759735
p = 1.94446248157493
p = 1.94446248157493
>> polder=1.8; pold=1.9 % Secant
pold = 1.9

>> for n=1:6, pnew = pold - (pold-polder) * f(pold) / (f(pold)-f(polder));
> polder=pold; pold=pnew, end

pold = 1.94934738830449

pold = 1.94430510658999

pold = 1.94446193240902

pold = 1.94446248163677

pold = 1.94446248157493

pold = 1.94446248157493
b.

>> f = @(x) log(x-1) + cos(x-1);
>> [£(1.3) £(2)]
ans =
-0.24863631520033 0.54030230586814

>> df = @(x) 1./(x-1) - sin(x-1);
> p=1.6, for n=1:6, p =p - £(p)/df(p), end % Newton’s
= 1.6
= 1.31460699949791

1.38623612050177

1.39752389069251
= 1.3977483900825
= 1.39774847595873
= 1.39774847595875
> pold = 1.6; p=1.4 % Secant
= 1.4
> for n=1:6, pnew = p - £(p) * (p-pold) / (£(p)-f(pold)); pold=p; p=pnew, end
= 1.39691982546514
.39775165385563
.39774848044192
.39774847595872
.39774847595875
.39774847595875
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These exercises were adequately discussed in class.

Likewise.



