
Math 310 Numerical Analysis, Fall 2010 (Bueler) September 29, 2010

Selected Solutions to Assignment #2

2. Suppose that 0 < q < p and that αn = α+O(n−p) (as n→∞). Then αn = α+O(n−q).

Proof. We know that there is a K > 0 so that

|αn − α| ≤ K
1

np

for large n. But, because p > q we know that

np > nq

for any n which is at least two. But then

1

np
<

1

nq
.

Therefore

|αn − α| ≤ K
1

np
< K

1

nq

so αn = α+O(n−q). �

3. This exercise requires writing a code. The basic procedure that I follow is this: First

open Matlab/Octave, then also open an editor, and make sure that Matlab/Octave can

“find” the file that is being edited. Once the file is saved, it becomes a command in the language,

available at that command line. Note that comments inserted at the beginning of the code become

the “help file” for the new command. Note that when you run a code like the ones below, the

variables defined and changed by the script become available at the command line. That is, the

codes below are scripts without the “function” keyword at the start, which localizes the scope

of the variables.

a. We compute

P99(0.3) =

99∑
i=1

(−1)i+1 (0.3)2i−1

2i− 1
.

This sum is computed by a for loop, starting with a sum of zero and adding on each term:

atansum.m
% ATANSUM Computes a partial sum of the Maclaurin series for
% arctan(x). Evaluates at x=0.3, and compares to value from
% built-in function.

x = 0.3;
y = 0.0;
for i = 1:99

y = y + (-1)ˆ(i+1) * xˆ(2*i-1) / (2*i-1); % y is partial sum
end

% print out partial sum, built-in value of arctan, and actual error:
y
atan(x)
err = abs(y - atan(x))

2

Note that the name of the arctan function in Matlab/Octave is “atan”; this is common to
most programming languages. Once this file is saved as “atansum.m”, we can do the following at
the Matlab/Octave command line:

>> help atansum

‘atansum’ is a script from the file /home/bueler/Desktop/M310_F10/atansum.m

ATANSUM Computes a partial sum of the Maclaurin series for arctan(x).

Evaluates at x=0.3, and compares to built-in function.

...

>> atansum

y = 0.291456794477867

ans = 0.291456794477867

err = 5.55111512312578e-17

Note that this estimate of arctan(0.3) is apparently very accurate.

b. First, to understand the question, note that

tan(π/4) = 1 ⇐⇒ π

4
= arctan(1) ⇐⇒ π = 4 arctan(1).

Partial sums of the Maclaurin series given in part a of the question are approximations of

arctan(x). Thus

π = 4 arctan(1) ≈ 4Pn(1).

So here is a program that computes the partial sums, namely Pn(1) for higher and higher n, and

then compares to the built-in value of π; note the use of break to leave the for loop when the

error |4Pn(1)− π| is the desired smallness:

atan4pi.m
% ATAN4PI Computes partial sums of the Maclaurin series for
% arctan(x), at x=1, until we are close to the value of pi.

format long g
x = 1.0;
y = 0;
for i = 1:9999 % goes well past where needed

y = y + (-1)ˆ(i+1) * xˆ(2*i-1) / (2*i-1); % y = P_n(1) when i=n
err_vs_pi = abs(4 * y - pi); % distance between 4P_n(1) and pi
[i 4*y err_vs_pi] % show intermediate results
if err_vs_pi < 1.0e-3

break % break out of loop if 4P_n(1) is
end % close to pi

end

Running it gives this output, which shows the counter i, the approximation 4Pi(1), and the error
|4Pi(1)− π|:

>> atan4pi

ans =

1 4 0.858407346410207

ans =

2 2.66666666666667 0.474925986923126

ans =

3

3 3.46666666666667 0.325074013076874

...

ans =

998 3.14059064983328 0.00100200375650905

ans =

999 3.14259365434004 0.001001000750251

ans =

1000 3.14059265383979 0.000999999749998981

Yes, amazingly enough, the error goes below 10−3 exactly on the 1000th term:

|4P1000(1)− π| < 10−3.

Note the much slower convergence of the series for arctan(1) than for arctan(0.3). In fact, the

radius of convergence for the Maclaurin series for arctan(x) is R = 1, and the convergence of the

series for arctan(1) is merely conditional, not absolute.

The above method computes the actual error by using the Matlab/Octave built-in value for

π. That is, it “unrealistically” uses the exact answer to evaluate the quality of the approximation.

As suggested in the question, however, one may know in advance how many terms the partial

sum must have to be close to π. In fact, for an alternating series, the difference between the sum

and a partial sum is less than the (n+ 1)st term. Abstractly:∣∣∣∣∣∣
∞∑
j=1

(−1)jaj −

 n∑
j=1

(−1)jaj

∣∣∣∣∣∣ ≤ an+1,

assuming that aj > 0 for all j and that the aj decrease, so that the series is genuinely alternating

and is convergent. (See any calculus book for a proof of this fact.) Thus we find the first n for

which
4

2(n+ 1)− 1
≤ 10−3,

which gives 2n+ 1 ≥ 4000 or n ≥ 3999/2 = 1999.5. It follows that the partial sum P2000(1) is as

close as we want, which is true. And, as we now know, mildly conservative.

4. Again I wrote a program, a script “m-file”, and saved it as bisect4a.m. One step in making
the program relatively clean is the line

f = @(x) x.^4 - 2 * x.^3 - 4 * x.^2 + 4 * x + 4;

This saves the function itself. It allows easy evaluation of the function when needed. This syntax

for defining functions is called an “anonymous” function, because the expression with “@(x)”

defines a function already, even though we then give it the name “f”. (The command “inline”

is similar, but use of anonymous functions is recommended while inline is deprecated.)

a. The initial bracket is [−2,−1] which has length 1. Thus we know that halving this bracket

7 times reduces the length of the bracket to 1/128 < 10−2. That is, 27 > 100.

bisect4a.m
% BISECT4A Solve polynomial root problem by bisection.

f = @(x) x.ˆ4 - 2 * x.ˆ3 - 4 * x.ˆ2 + 4 * x + 4; % define the fcn

a = -2; % set initial bracket
b = -1;
[f(a) f(b)] % print out f values; show we have a bracket

4

for n = 1:7
c = (a+b)/2;
if f(c) > 0 % note that f(a)>0, so if f(c)>0 then

a = c; % c is the new a
else

b = c;
end

end

[a b] % show: final bracket
(b - a)/2 % half-length of bracket (=max err)
[c f(c)] % estimate of root and f value

Running shows several outputs. First we see that f(a) = f(−2) = 12 > 0 and f(b) = f(−1) =
−1 < 0, so we have a bracket. Then we see the final bracket, and its half-length, and the final
estimate c = −1.4140625. So we know that there is a solution within 0.0039 of the number
c = −1.4140625.

>> format long g

>> bisect4a

ans = 12 -1

ans = -1.421875 -1.4140625

ans = 0.00390625

ans = -1.4140625 -0.00120812281966209

b. The program here is nearly identical, so I don’t even show it. Note that, again, f(a) =
f(0) > 0, but the initial bracket length is 2 so it makes sense to do 8 halvings. The run looks
like:

>> bisect4b

ans = 4 -4

ans = 1.4140625 1.421875

ans = 0.00390625

ans = 1.4140625 0.00120848789811134

5. This time I used fprintf, which does formatted printing of strings, including numbers

computed inside the program. Some numbers should be printed as integers and some as floating-

point numbers, and sometimes we want scientific notation, and so on. Programmers who have

used the C language will already recognize how fprintf works, but for the rest of us see:

http://www.mathworks.com/help/techdoc/ref/fprintf.html

The program also checks the sign of f(x) at the left end of the bracket, and updates the bracket

the right way whether f(a) is positive or negative. The program is otherwise similar to the last

problem:

bisect5.m
% BISECT5 Solve polynomial root problem by bisection.

f = @(x) 3 * x - exp(x); % define the function

a = 1; b = 2; % set initial bracket
s = sign(f(a)); % either +1 or -1 according to sign of f(a)
for n = 0:19

fprintf(’ [a_%2d, b_%2d] = [%f, %f]\n’, n, n, a, b)
c = (a+b)/2;
if sign(f(c)) == s % now this works if f(a)>0 *or* if f(a)<0

a = c;

http://www.mathworks.com/help/techdoc/ref/fprintf.html

5

else
b = c;

end
end
fprintf(’final estimate c = %f has maximum error %e\n’,c,(b-a)/2)

The output is clear and informative:
>> bisect5

[a_ 0, b_ 0] = [1.000000, 2.000000]

[a_ 1, b_ 1] = [1.500000, 2.000000]

[a_ 2, b_ 2] = [1.500000, 1.750000]

[a_ 3, b_ 3] = [1.500000, 1.625000]

[a_ 4, b_ 4] = [1.500000, 1.562500]

[a_ 5, b_ 5] = [1.500000, 1.531250]

[a_ 6, b_ 6] = [1.500000, 1.515625]

[a_ 7, b_ 7] = [1.507812, 1.515625]

[a_ 8, b_ 8] = [1.511719, 1.515625]

[a_ 9, b_ 9] = [1.511719, 1.513672]

[a_10, b_10] = [1.511719, 1.512695]

[a_11, b_11] = [1.511719, 1.512207]

[a_12, b_12] = [1.511963, 1.512207]

[a_13, b_13] = [1.512085, 1.512207]

[a_14, b_14] = [1.512085, 1.512146]

[a_15, b_15] = [1.512115, 1.512146]

[a_16, b_16] = [1.512131, 1.512146]

[a_17, b_17] = [1.512131, 1.512138]

[a_18, b_18] = [1.512131, 1.512135]

[a_19, b_19] = [1.512133, 1.512135]

final estimate c = 1.512134 has maximum error 4.768372e-07

Figure 1. Superimposed plots of y = x and y = tanx. The first place they cross

to the right of x = 0, at about x = 4.3, is the first positive solution of x = tanx.

6. a. I made a single figure showing what I wanted:

xtanx.m
% XTANX plots of y=x and y=tan(x), superimposed

x = -5:.0001:10;

6

plot(x,x,’.’,x,tan(x),’.’)
grid on, xlabel(’x’)
axis([-5 10 -10 10])

The result is Figure 1. In xtanx.m, note the use of axis to scale the y-axis; the default scaling will

show the huge values of tanx, and hide the crossings we seek. Also, the plot style uses isolated

dots, and not the default lines-connecting-dots. This means there are no vertical lines showing

where tanx “jumps” from +∞ to −∞.

b. Define the function f(x) = x − tanx. We want to solve f(x) = 0. From the graph, the

solution we want is in the interval [4, 3π/2], so we choose initial bracket [4, 4.7]. Here’s the code:

solvextanx.m
% SOLVEXTANX Solve x = tan(x) for first positive root using bisection.

f = @(x) x - tan(x); % define the fcn

a = 4; b = 4.7; % set initial bracket
s = sign(f(a)); % either +1 or -1 according to sign of f(a)
n = 0;
while (b-a)/2 > 1.0e-5

fprintf(’ [a_%2d, b_%2d] = [%f, %f]\n’, n, n, a, b)
c = (a+b)/2;
if sign(f(c)) == s % now this works if f(a)>0 *or* if f(a)<0

a = c;
else

b = c;
end
n = n+1;

end
fprintf(’final estimate c = %f has maximum error %e\n’,c,(b-a)/2)

And here’s the output, showing 4.49342 is the first positive solution of x = tanx:
>> solvextanx

[a_ 0, b_ 0] = [4.000000, 4.700000]

[a_ 1, b_ 1] = [4.350000, 4.700000]

[a_ 2, b_ 2] = [4.350000, 4.525000]

[a_ 3, b_ 3] = [4.437500, 4.525000]

[a_ 4, b_ 4] = [4.481250, 4.525000]

[a_ 5, b_ 5] = [4.481250, 4.503125]

[a_ 6, b_ 6] = [4.492188, 4.503125]

[a_ 7, b_ 7] = [4.492188, 4.497656]

[a_ 8, b_ 8] = [4.492188, 4.494922]

[a_ 9, b_ 9] = [4.492188, 4.493555]

[a_10, b_10] = [4.492871, 4.493555]

[a_11, b_11] = [4.493213, 4.493555]

[a_12, b_12] = [4.493384, 4.493555]

[a_13, b_13] = [4.493384, 4.493469]

[a_14, b_14] = [4.493384, 4.493427]

[a_15, b_15] = [4.493405, 4.493427]

final estimate c = 4.493416 has maximum error 5.340576e-06

