
Math 310 Numerical Analysis (Bueler) December 13, 2009

Solutions to Assignment #9

Problems 7.2, exercise 21: NOT GRADED!
The first rule is Simpson’s rule, so

a =
1
6
, b =

4
6
, c =

1
6
.

The second rule is not familiar, but since x0 = 1/4, x1 = 1/2, and x2 = 3/4 we have

α =
∫ 1

0
`0(x) dx =

2
3
, β =

∫ 1

0
`1(x) dx = −1

3
, γ =

∫ 1

0
`2(x) dx =

2
3
.

I guess I am fundamentally lazy because I did not do these integrals by hand. The
integrands are quadratic polynomials, so Simpson’s rule does these integrals exactly. So
I wrote and ran a little code:

othersimp.m
% OTHERSIMP Compute coefficients in second rule in 7.2 exercise #21.

% build the Lagrange polynomials as functions:

x = [0.25 0.5 0.75];

l0 = @(y) (y-x(2)) .* (y-x(3)) / ((x(1)-x(2)) * (x(1)-x(3)));

l1 = @(y) (y-x(1)) .* (y-x(3)) / ((x(2)-x(1)) * (x(2)-x(3)));

l2 = @(y) (y-x(1)) .* (y-x(2)) / ((x(3)-x(1)) * (x(3)-x(2)));

% plot them to check they are the right functions:

xf=0:0.001:1;

plot(x,ones(size(x)),’o’,x,zeros(size(x)),’o’), hold on

plot(xf,l0(xf),xf,l1(xf),xf,l2(xf)), hold off, grid on

legend(’l_0(x)’,’l_1(x)’,’l_2(x)’)

% now apply Simpson’s rule to *exactly* do the integrals which

% determine the Newton-Cotes coefficients:

format rat

alpha = (1/6) * (l0(0) + 4*l0(0.5) + l0(1))

beta = (1/6) * (l1(0) + 4*l1(0.5) + l1(1))

gamma = (1/6) * (l2(0) + 4*l2(0.5) + l2(1))

>> othersimp

alpha = 2/3

beta = -1/3

gamma = 2/3

Now, which rule is better?
It is appropriate to look at the integrals which appear in the error analysis, as done

in class, namely the integrals of the known-part of the remainder term from polynomial
interpolation,∫ 1

0
|x− 0||x− 1

2
||x− 1| dx,

∫ 1

0
|x− 1

4
||x− 1

2
||x− 3

4
| dx

2

But the result is ambiguous to me because we only know inequalities about these results.
(For instance, if I tell you that all I know about X and Y are that |X| < 10 and |Y | < 20,
you still cannot answer: Which is bigger, X or Y ?)

And it turns out that both rules exactly integrate all cubic polynomials, and neither
rule exactly integrates quartics. (I thought this was the difference . . .)

So I think the answer the authors had in mind is this: Integration has this property

M(b− a) ≤
∫ b

a
f(x) dx ≤ m(b− a),

where M = max f(x) and m = min f(x). Simpson’s rule also has this property. But
the second rule does not, because β = −1/3 is negative, even though a + b + c = 1 and
α + β + γ = 1. In an informal sense, the second rule is not an average like integration
and Simpson’s rule are. Concretely, suppose we have a continuous function for which
M = 1, m = 0, and f(1/4) = 0 and f(1/2) = 1 and f(3/4) = 0. Then the second rule
wrongly says that the integral is −1/3, which is outside of the range of the function.

Problems 7.2, exercise 22: If this formula is true for all quadratics then it is
true for the monomials 1, x, x2. That means, immediately, three equations in the three
unknowns α, x0, x1:

1 =
∫ 1

0
1 dx = α [1 + 1]

1
2

=
∫ 1

0
x dx = α [x0 + x1]

1
3

=
∫ 1

0
x2 dx = α

[
x2

0 + x2
1

]
.

These are not linear equations, so there is no particular guarantee we can solve them at
all. But one tries . . . and in this case it works out fine.

The first equation implies α = 1/2. The second and third equations above simplify to

1 = x0 + x1 and
2
3

= x2
0 + x2

1.

The first of these can be solved for x1, for example, and that result substituted into the
second gives

2
3

= x2
0 + (1− x0)2 = 2x2

0 − 2x0 + 1

or 2x2
0 − 2x0 + 1

3 = 0. This quadratic has solutions

x0 =
2±

√
4− (8/3)
4

=
1
2
± 1

2
√

3
.

Which solution do we choose? Both. Note that the problem is symmetric in x0 and x1,
so one of these must be x0 and the other x1. Fortunately they are both in the interval
[0, 1]. (Being in the interval of integration is not completely obligatory; one can imagine
numerical rules from polynomial extrapolation, but they are not widely used.)

In summary, yes there is such an integration rule, and

α =
1
2
, x0 = 0.21132486540519, x1 = 0.78867513459481

3

This turns out that we have found one of the simplest “Gaussian integration” rules. It
turns out to be the best two-point numerical integration rule in lots of ways. Translated
to the interval [−1, 1], it is equation (8) in section 7.3, which we skipped.

Problems 7.4, exercise 6a: This is an application of the online program romberg.m,
if you know how to alter that code the right way, or display its intermediate results.
Note that the exact answer is ∫ 3

1

dx

x
= ln 3− ln 1 = ln 3

Here is my much-more-direct method using equations (4) and (5) on pages 503–504:
>> f = @(x) 1./x;

>> R00 = trap(f,1,3,1), R10 = trap(f,1,3,2), R20 = trap(f,1,3,4)

R00 = 1.33333333333333

R10 = 1.16666666666667

R20 = 1.11666666666667

>> R11 = R10 + (1/(4-1)) * (R10 - R00)

R11 = 1.11111111111111

>> R21 = R20 + (1/(4-1)) * (R20 - R10)

R21 = 1.10000000000000

>> R22 = R21 + (1/(4^2-1)) * (R21 - R11)

R22 = 1.09925925925926

>> log(3)

ans = 1.09861228866811

We see that Romberg’s valueR(2, 2) = R22 takes three not-so-good trapezoid rule results,
and produces a pretty good estimate.

Problem 4 in the same section motivates the following comment. Note that R11 and
R21 are actually Simpson’s rule results:
>> (1/3) * (f(1) + 4*f(2) + f(3))

ans = 1.11111111111111

>> (1/6) * (f(1) + 4*f(1.5) + 2*f(2) + 4*f(2.5) + f(3))

ans = 1.10000000000000

Thus, just by building the second column of the Romberg “array”, we are making
identifiable progress over raw trapezoid rule. Filling in the rest of the array is going
“beyond” Simpson’s rule.

Problems 7.4, exercise 8: The points of this exercise are that R(i, j) is computable
with exactly the same number of function evaluates as is R(i, 0), which is 2i + 1, and
that R(i, 0) is the trapezoid rule estimate efficiently computed with no more than the
minimal number of function evaluations. Specifically, my answer to this question is

(number of function evaluations of f(x) to compute R(i, j)) = 2i + 1.

Problems 8.1, exercise 4: These solutions are just integration, and in both cases
we can write

x(t) = x(0) +
∫ t

0
f(s) ds =

∫ t

0
f(s) ds

because f(t, x) = f(t) does not depend on the unknown solution x(t).

4

In this and exercise 5 you should check your answer. That is, substitute into the
differential equation and check also that x(0) = 0.

(a) x(t) = t4/4

(b) Since I don’t have my “arc” integrals well-memorized, here is the re-derivation
using s = sin θ:

x(t) =
∫ t

0

ds√
1− s2

=
∫ arcsin(t)

0

cos θ dθ√
1− sin2 θ

=
∫ arcsin(t)

0

cos θ dθ
cos θ

=
∫ arcsin(t)

0
dθ = arcsin(t)

Problems 8.1, exercise 5: The problem hints that you can think of this case, with
f(t, x) = f(x) not a function of t, by the manipulation

dx

dt
= f(x) ⇐⇒ dt

dx
=

1
f(x)

and then you can again solve by integration with respect to x, because the roles of
t,x are reversed relative to exercise 4 previously. By contrast, most students use this
technique,

dx

dt
= f(x) ⇐⇒ dx

f(x)
= dt ⇐⇒

∫
dx

f(x)
=
∫
dt,

so these problems look like this:

(a) ∫
x2 dx =

∫
dt

1
3
x3 = t+ C (and x(0) = 0 =⇒ C = 0)

x(t) = (3t)1/3

(b) I did this one in class: x(t) = tan t.
The point of exercises 4 and 5 is to get just good enough at solving ODEs so that
we can generate exact solutions in enough cases to know that our numerical methods
are doing the right thing, or are making expected-size errors. That process of checking
against exact solutions is called “verification”.

Exercise 1: (a) The “exact” answer is known in this case just as well as the values
of the exponential and the sine function are known. This integral can be computed from
a very-well-understood built-in function just like those functions. I typed “help erf”
to remind myself how the built-in error function is defined:

erf x =
2√
π

∫ x

0
e−s2

ds.

Also I wrote an un-exciting Simpson’s rule method which has the same calling-arguments
as trap:

5

simp.m
function z = simp(f,a,b,n)

% SIMP Approximate the integral

% /b

% | f(x) dx

% /a

% using composite Simpson’s rule with n subintervals.

% The function f(x) must be vectorized and n must be even.

%

% Example: >> simp(@(x) exp(-x),0,2,100)

% >> exact = 1-exp(-2)

if mod(n,2)˜=0, error(’n must be even for Simpsons rule’), end

h = (b - a) / n;

x = a + (0:n) * h;

z = (h/3) * sum([1 repmat([4 2],1,(n/2)-1) 4 1] .* feval(f,x));

So now the results:
>> exact = (sqrt(pi)/2) * erf(2)

exact = 0.882081390762422

>> f = @(x) exp(-x.^2);

>> trap(f,0,2,32)

ans = 0.882057557801211

>> simp(f,0,2,32)

ans = 0.882081328646356

>> romberg(f,0,2)

ans = 0.882081390708990

>> relacctrap = abs(trap(f,0,2,32) - exact) / exact

relacctrap = 2.70190046630777e-05

>> relaccsimp = abs(simp(f,0,2,32) - exact) / exact

relaccsimp = 7.04198792989501e-08

>> relaccromb = abs(romberg(f,0,2) - exact) / exact

relaccromb = 6.05739435772925e-11

I suppose I would only conclude that all of these methods do a reasonable job, and
that this problem benefits both from switching from linear to quadratic interpolation
(i.e. from trapezoid to Simpson’s) and from Richardson extrapolation (i.e. Romberg).

(b) This is no harder. Note that when we hand a function to a code we hand a
“function handle” to the code, which explains the “@sin” argument:
>> exact = -cos(7) + cos(2)

exact = -1.17004909089045

>> relacctrap = abs(trap(@sin,2,7,32) - exact) / abs(exact)

relacctrap = 0.00203533353212976

>> relaccsimp = abs(simp(@sin,2,7,32) - exact) / abs(exact)

relaccsimp = 3.32101817011846e-06

>> relaccromb = abs(romberg(@sin,2,7) - exact) / abs(exact)

relaccromb = 4.10526169284464e-10

Here we see essentially the same pattern as in part (a).

