
Math 310 Numerical Analysis (Bueler) December 9, 2009

Solutions to Assignment #8

Problems 6.4, exercise 14: The answer turns out to be yes, which means that I have to be
organized in writing it up. There are a lot of facts to check; I count 8. Let’s start with the first
and second derivatives:

f ′(x) =


2 + 3(x+ 1)2 [−1, 0]

5 + 6x [0, 1]

11 + 6(x− 1)− 3(x− 1)2 [1, 2]

∣∣∣∣ f ′′(x) =


6(x+ 1) [−1, 0]

6 [0, 1]

6− 6(x− 1) [1, 2]

Next, note f ′′(−1) = 0 and f ′′(2) = 0 so we it is “natural”. Furthermore the second derivative
is continuous at x = 0 (f ′′(0) = 6) and at x = 1 (f ′′(1) = 6). The first derivative is continuous
at x = 0 (f ′(0) = 5) and at x = 1 (f ′(1) = 11). Finally the function itself is continuous at
x = 0 (f(0) = 3) and at x = 1 (f(1) = 11). The function is, therefore, the unique natural cubic
spline through the points (−1, 0), (0, 3), (1, 11), (2, 24). (Checking continuity at an x-value means
plugging that value into the polynomial on each side and checking that results agree.)

Problems 6.4, exercise 17: This is a good one to do by hand, but I will only show here how
to check your answer with ncspline.m. The program ncspline.m only computes the coefficients
internally, without displaying them, so I copied it to a new file ncspline dump.m, and uncom-
mented the line “%[b c d]”. I modified just a bit more to display a clean table of coefficients.
Then I ran it, with result
>> ncspline_dump([-1 0 1],[13 7 9],0);

table [a | b | c | d] of coefficients:

ans =

13 -8 0 2

7 -2 6 -2

Thus the natural cubic spline with these values and knots is

S(x) =

{
13− 8(x+ 1) + 2(x+ 1)3, x ∈ [−1, 0]

7− 2x+ 6x2 − 2x3. x ∈ [0, 1]

On the other hand, producing a clean plot is exactly the job for which ncspline.m was built,
so:
>> x=[-1 0 1]; y=[13 7 9]; xf=-1:0.01:1; yf=ncspline(x,y,xf); plot(x,y,’o’,xf,yf)

(The result is not shown.)

Computer Problems 6.4, exercise 1: (Sorry, I overlooked the “several test cases” phrase. I
should have said that one test case is fine.) My curve on graph paper looked like the script letter
“v”. It generated two lists of x(t) and y(t) values, and each list generated a cubic spline (with
independent variable t in each case). The function ncspline.m generated finely-interpolated x

and y values, and plotting these, without any reference to t, gave back the figure. The rest is
details:

letterv.m
% LETTERV Use natural cubic splines (ncspline.m) to plot a script letter
% "v", using points taken from a written letter on graph paper.

t = 0:1:10; % 11 points
xy = [3.0 7.0; % I found it easiest to enter coordinates of points

4.0 7.9; % this way, as a list of (x y) pairs
4.8 6.0;
5.1 4.0;
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5.3 2.6;
6.0 2.0;
7.1 3.0;
7.9 5.0;
8.2 6.0;
9.0 7.4;
10.0 7.6];

x = xy(:,1)’; y = xy(:,2)’; % extract just x and y separately

tf = 0:0.01:10; % fine grid for plotting (on t-vs-x and t-vs-y axes)
xf = ncspline(t,x,tf); yf = ncspline(t,y,tf);

% t-versus-x and t-versus-y plots, using subplot:
figure(1)
subplot(2,1,1), plot(t,x,’o’,tf,xf), grid on, xlabel t, ylabel x
title("parameterized curve in pieces")
subplot(2,1,2), plot(t,y,’o’,tf,yf), grid on, xlabel t, ylabel y

% plot in x,y plane; parameter "t" is never mentioned!
figure(2), plot(x,y,’o’,xf,yf)
axis equal, grid on, xlabel x, ylabel y, title("the letter v")

Figure 1. The script letter “v” by cubic splines through by-hand identified
points. This is “figure(2)” from the code letterv.m.

Problems 7.2, exercise 1: Somewhat tedious, but the method is clear. Write down the
Lagrange polynomials `0(x), . . . , `3(x) and integrate them to find A0, . . . , A3, respectively, in the
integration rule

∫ 1

0

f(x) dx ≈ A0f(0) +A1f(
1
3

) +A2f(
2
3

) +A3f(1).

Here is an alternate way that exploits our available tool, Matlab/Octave. The rule should
be able to integrate cubic polynomials exactly. (Why? ) This gives 4 equations in the unknown



3

Ai:

1 =
∫ 1

0

1 dx = A0 +A1 +A2 +A3,

1/2 =
∫ 1

0

x dx = 0A0 + (1/3)A1 + (2/3)A2 + 1A3

1/3 =
∫ 1

0

x2 dx = 0A0 + (1/9)A1 + (4/9)A2 + 1A3

1/4 =
∫ 1

0

x3 dx = 0A0 + (1/27)A1 + (8/27)A2 + 1A3

This system of equations has numerical solution:
>> format rat

>> [1 1 1 1; 0 (1/3) (2/3) 1; 0 (1/9) (4/9) 1; 0 (1/27) (8/27) 1] \ [1 (1/2) (1/3) (1/4)]’

ans =

1/8

3/8

3/8

1/8

So ∫ 1

0

f(x) dx ≈ 1
8

[
f(0) + 3f(

1
3

) + 3f(
2
3

) + f(1)
]
.

Problems 7.2, exercise 14: Similar to previous.

Problems 7.2, exercise 31: This is fairly similar to Exercise 2 below. The error term on
page 482 is

− (b− a)
12

h2f ′′(ξ).

The derivatives of the integrand are

f ′(x) = 1− 2xe−x2
, f ′′(x) = (−2 + 4x2)e−x2

.

The maximum of |f ′′(x)| on the interval is bounded:

|f ′′(x)| = | − 2 + 4x2|e−x2
≤ 14e−1 = 5.15

(This is quite pessimistic because the magnitude of f ′′ is in fact less than 1 on the interval [1, 2].
But it suffices.) Require the error to be smaller than the given number:∣∣∣∣ (b− a)

12
h2f ′′(ξ)

∣∣∣∣ =
h2

12
|f ′′(ξ)| ≤ 5.15h2

12
≤ 0.5× 10−7.

This equivalent to h ≤
√

1.165× 10−7 = 3.4×10−4 which says n = 1/h ≥ 2929.8 so I get n = 2930
subintervals.

Exercise 1: (a) Keeping the name x1 for the center point (a+b)/2, the Lagrange polynomials
simplify to

`0(x) =
(x− x1)(x− b)
(a− x1)(a− b)

=
2

(b− a)2
(
x2 − (x1 + b)x+ x1b

)
,

`1(x) =
(x− a)(x− b)

(x1 − a)(x1 − b)
= − 4

(b− a)2
(
x2 − (a+ b)x+ ab

)
,

`2(x) =
(x− a)(x− x1)
(b− a)(b− x1)

=
2

(b− a)2
(
x2 − (a+ x1)x+ ax1

)
.
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The right-hand expressions are one of several forms in which the Lagrange polynomials are rela-
tively easy to integrate. The result of integration is given in the problem statement. These integrals
were needed to compute the coefficients A0, A1, A2 in Simpson’s rule,

∫ b

a
f(x) dx ≈

∑2
i=0Aif(xi).

(b) I’ll give some detail here:Z b

a

(x− a)(b− x) dx = −
Z b

a

x2 − (a + b)x + ab dx = −
»

x3

3
− (a + b)

x2

2
+ abx

–b

a

= − b3

3
+ (a + b)

b2

2
− ab2 +

a3

3
− (a + b)

a2

2
+ a2b =

1

3
(a− b)(a2 + ab + b2) +

1

2
(b− a)(a2 + b2)

=
1

6
(b− a)

ˆ
−2a2 − 2ab− 2b2 + 3a2 + 3b2˜ =

1

6
(b− a)(b− a)2 =

(b− a)3
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This integral was necessary to complete the error formula for the trapezoid rule,∫ b

a

f(x) dx =
b− a

2
[f(a) + f(b)]− f ′′(ξ)

12
(b− a)3.

Exercise 2: The error formula for the composite Simpson’s rule on page 484 says∫ b

a

f(x) dx = Sn −
b− a
180

h4f(4)(ξ)

for Sn the composite Simpson’s approximation and h = (b− a)/n. In our case f(x) = π+ sin(3x)
so f (4)(x) = 81 sin(3x). Thus∣∣∣∣∫ 10

0

f(x) dx− Sn

∣∣∣∣ =
10− 0

180
h4 |81 sin(3ξ)| ≤ 9

2
h4,

using the standard inequality | sin θ| ≤ 1. Recalling h = 10/n, we want to choose

9
2
h4 ≤ 10−8 ⇐⇒ 9

2
104

n4
≤ 10−8 ⇐⇒ n4 ≥ 4.5× 1012 ⇐⇒ n ≥ 1456.475.

But n must be an even integer, so n = 1458 is the smallest value we expect to get that accuracy.
Does it get that accuracy? On the one hand, the exact answer is∫ 10

0

π + sin(3x) dx = 10π +
1
3

(1− cos(30)).

On the other hand,
>> f=@(x) pi + sin(3*x);

>> n=1458; h=10/n; xi=0:h:10;

>> Sn = (h/3) * sum([1 repmat([4 2],1,n/2 -1) 4 1] .* f(xi))

Sn = 31.6978427195495

>> exact = 10*pi+(1/3)*(1-cos(30))

exact = 31.6978427192687

>> abs(Sn - exact)

ans = 2.80756751180888e-10

Thus the error of 2.8× 10−10 is smaller than 10−8.
Why the gap? That is, why is it that when we used n = 1458 the error was quite a bit less

than 10−8? Because of “| sin(3ξ)| ≤ 1”, which is true but not precise. In fact I find that the
smallest n for which the error is less than 10−8 is n = 598; this comes from a Matlab/Octave
program-at-the-command line:

>> for n=8:2:1458 ...

> h=10/n; xi=0:h:10; Sn=(h/3)*sum([1 repmat([4 2],1,n/2 -1) 4 1].*f(xi));

> if abs(exact-Sn)<1e-8, n, break, end

> end

n = 598
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Witness the power of a super-calculator . . . eh?

Exercise 3: From the statement of the problem I immediately was able to set up equations for
the coefficients. In particular, as with cubic splines, for j = 0, . . . , n− 1 let

hj = tj+1 − tj and mj =
yj+1 − yj

hj
.

The requirement Qj(tj) = yj implies aj = yj . The other two requirements immediately become

yj + bjhj + cjh
2
j = yj+1 j = 0, . . . , n− 1,

bj + 2cjhj = bj+1 j = 0, . . . , n− 2.

This is 2n − 1 equations in the 2n unknowns bj , cj (for j = 0, . . . , n − 1), so the additional
requirement c0 = 0 is enough to hope for a unique solution.

In particular, take the first of the above equations and solve it for bj :

bj =
yj+1 − yj − cjh2

j

hj
= mj − cjhj .

Substitute this into the second set of equations, for each of bj and bj+1, to get

mj − cjhj + 2cjhj = mj+1 − cj+1hj+1

or, equivalently,
hjcj + hj+1cj+1 = mj+1 −mj

for j = 0, . . . , n − 2. This last is a set of n − 1 equations in the n unknowns cj , j = 0, . . . , n − 1,
so the additional condition c0 = 0 is needed.

We can now write a matrix equation for the cj :
1
h0 h1

h1 h2

. . . . . .
hn−2 hn−1




c0
c1
c2
...

cn−1

 =


0

m1 −m0

m2 −m1

...
mn−1 −mn−2


This is a lower-triangular and bidiagonal system. As long has h1, . . . , hn−1 are non-zero, which
they are merely because we require distinct nodes, the solution cj is unique. Once cj are found
we can find bj immediately.

The solution can be found by fairly-obvious forward substitution, as in the first “for” loop in
the following code:

qspline.m
function yi = qspline(t,y,xi)
% QSPLINE yi = qspline(t,y,xi)
% Computes not-particularly-natural quadratic spline through points
% t = t(1),...,t(n+1)
% y = y(1),...,y(n+1)
% and evaluates at the x-values in xi, to give result yi. Requires
% t(1) < t(2) < ... < t(n+1) and xi in [t(1),t(n+1)], and finds
% quadratic polynomials in this form:
% Q_i(x) = y_i + b_i (x - t_i) + c_i (x - t_i)ˆ2
% Try: >> x=0:3; y=exp(x); xp=0:0.01:3; yq = qspline(x,y,xp);
% >> plot(x,y,’o’,xp,exp(xp),xp,yq)
% >> legend(’data’,’underlying function’,’quadratic spline’)
% Compare to ncspline.m for natural cubic splines.

t = t(:); y = y(:); % force t and y to be column vectors
% check that inputs make sense
if (length(t) ˜= length(y)), error(’t,y must be vectors of same size’), end
n = length(t) - 1;
if n <= 0, error(’must have at least two points to produce spline’), end
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if any(xi < t(1)) | any(xi > t(n+1))
error(’xi must be in interior (interval [t(1),t(n+1)])’)

end

h = diff(t); % gaps: h(i) = t(i+1) - t(i)
m = diff(y) ./ h; % slopes: m(i) = (y(i+1) - y(i)) / h(i)

% directly solve bidiagonal system for coeffs c_i, by forward substitution
c = zeros(size(h)); % c_0 = 0 already
for j=2:n
c(j) = ( m(j)- m(j-1) - h(j-1)*c(j-1) ) / h(j);

end

% determine other coeffs from c:
b = m - h .* c;

% evaluate quadratics; requires finding interval in which xi lies
xi = xi(:);
yi = zeros(size(xi));
for k = 1:length(xi)
i = 1;
while xi(k) > t(i+1)
i = i + 1;

end
% now xi(k) is in [t(i),t(i+1)], so apply Hoerner to evaluate Q_i(x):
dx = xi(k) - t(i);
yi(k) = y(i) + dx * (b(i) + dx * c(i));

end

The “geometric consequences” of the choice c0 = 0 are that the left-most quadratic is a straight
line, which is somewhat ugly, while the “algorithmic consequence” is already mentioned: the
system of equations is lower triangular. Another, possibly better choice is to require c0 = c1,
implying extra smoothness at the first interior node. This condition can be easily dealt-with,
but it does break the literal lower-triangularness of the system. But both of these suggestions
are obviously flawed in that they are asymmetric, because they treat the left end of the spline
differently from the right. And, at this point, I don’t have a really great suggestion . . .


