
Math 310 Numerical Analysis (Bueler) November 25, 2009 [CORRECTED VERSION]

Assignment #8
DUE Friday 4 December, 2009 at 5pm

Problems 6.4, exercise 14.

Problems 6.4, exercise 17. (Do this by hand. You may use the program ncspline.m,
which is online at http://www.dms.uaf.edu/~bueler/ncspline.m, to check your answer,
but I encourage you to do this easy problem by returning to the meaning of natural cubic
splines. Namely, that they have continuous of first and second derivatives at interior nodes
and S′′ = 0 at end nodes.)

Computer Problems 6.4, exercise 1. Concretely, use 11 points and compute the
cubic splines with ncspline.m.

Problems 7.2, exercise 1.

Problems 7.2, exercise 14.

Problems 7.2, exercise 31.

Exercise 1. In lecture, while deriving Simpson’s rule and the error term for trapezoid
rule, I claimed certain integrals came out certain ways. Please fill in these easy calculations:

(a) On the interval [a, b] and with x0 = a, x1 = (a + b)/2, x2 = b, compute Lagrange
polynomials `0(x), `1(x), `2(x). Then show

A0 =
∫ b

a
`0(x) dx =

b− a

6
,

A1 =
∫ b

a
`1(x) dx =

4(b− a)
6

,

A2 =
∫ b

a
`2(x) dx =

b− a

6
.

Describe in a sentence what these quantities are.

(b) Show ∫ b

a
(x− a)(b− x) dx =

(b− a)3

6
.

Describe in a sentence what role this quantity played.

Exercise 2. Using the error term on page 484, find what n is needed to approximate∫ 10

0
π + sin(3x) dx

to within 10−8 using composite Simpson’s rule. Then apply composite Simpson’s rule, and
show, by computing the exact integral, that the actual error is that small.

http://www.dms.uaf.edu/~bueler/ncspline.m


2

Exercise 3. Write a quadratic spline program. In particular, given a = t0 < t1 < · · · <
tn = b and y0, y1, . . . , yn, the program will evaluate Q(x) at given x values in [a, b]. Here

Q(x) = Qj(x) = aj + bj(x− tj) + cj(x− tj)2 on tj ≤ x ≤ tj+1,

with

Qj(tj) = yj , j = 0, 1, . . . , n− 1,

Qj(tj+1) = yj+1, j = 0, 1, . . . , n− 1,

Q′j(tj+1) = Q′j+1(tj+1), j = 0, 1, . . . , n− 2.

Show that we still need one more condition. You may use the additional condition c0 = 0.
You will discover that you can solve the system “by hand” for all the coefficients, because

the matrix you need to solve is bi-diagonal and lower triangular (at least the way I set it
up). Comment on the geometric and algorithmic consequences of the choice c0 = 0, and
suggest better choices.

The inputs and outputs of your code will be like ncspline.m, which is online. In fact,
I encourage you to base your work on that code, but the core of your code can be simpler
than ncspline.m because you do not need to set up and solve a system, but you can replace
that part with a loop which computes coefficients.


