
Math 310 Numerical Analysis (Bueler) November 26, 2009

Solutions to Assignment #7

Problems 6.1, exercise 13: Let f(x) = cosh(x). Let x0, x1, . . . , x22 be any 23
distinct nodes in [−1, 1]. Let p(x) be the unique degree 22 polynomial with p(xj) = f(xj)
for all j. Then p(x) has relative approximation error less than 5× 10−16, and in fact:

|p(x)− f(x)|
|f(x)|

≤ 3.813× 10−16.

Proof. We apply Lagrange’s remainder theorem (page 315). Note f(x) = coshx has as
many continuous derivatives as desired, and f (23)(x) = sinhx. Also, we know nothing
detailed about xj , but we do know that both x and xj are in [−1, 1], so |x− xj | ≤ 2. If
x is in [−1, 1] then

|f(x)− p(x)| = |f
(23)(ξ)|
23!

|x− x0| |x− x1| . . . |x− x22| ≤
| sinh ξ|

23!
223 ≤ (sinh 1)223

23!
.

(Note that sinhx is increasing, so it takes its maximum value at the end of the interval.)
The relative error can now be approximated, because f(x) = coshx ≥ cosh 0 = 1,

because y = coshx has its minimum at x = 0:

|p(x)− f(x)|
|f(x)|

≤ (sinh 1)223

(cosh 0)23!
= 3.813× 10−16.

�

Problems 6.1, exercise 27: (This is slightly easier than the last.) The unique degree
12 polynomial p(x) which interpolates f(x) = ex−1 at 13 distinct points x0, x1, . . . , x12,
all in the interval [−1, 1], has the property that if x is any point in [−1, 1] then

|f(x)− p(x)| ≤ 213

13!
= 1.316× 10−6.

Proof. By Lagrange’s remainder theorem, noting f (13)(x) = f(x) = ex−1, which has a
maximum of e0 = 1 on [−1, 1],

|f(x)−p(x)| = |f
(13)(ξ)|
13!

|x−x0| |x−x1| . . . |x−x12| ≤
eξ−1

13!
213 ≤ 1 · 213

13!
= 1.316×10−6

(Since we do not know where the nodes are, we cannot do better than this estimate.) �

Problems 6.1, exercise 37: The first thing I did was put the data in a readable
file:

stampdata.m
% STAMPDATA Just store the data.

t = [1885, 1917, 1919, 1932, 1958, 1963, 1968, 1971, 1974, 1978, ...

1981+(3/12), 1981+(10/12), 1985, 1988, 1991, 1995, 1999, 2001]’;

y = [2 3 2 3 4 5 6 8 10 15 ...

18 20 22 25 29 32 33 34]’;

2

Next, here is a code that solves for the coefficients cj of the Newton polynomial; it sets
up a triangular matrix and uses built-in backslash to solve:

stamps.m
function cost = stamps(year)

% STAMPS Fit high degree polynomial in Newton form through

% stamp cost data. Evaluates it at the input year.

stampdata % fills t,y with data

ts = t - 1885; % = [0 32 34 47 ... 106 110 114 116]

% build Newton matrix to find c_j in

% p(x) = c_1 + c_2 (x-0) + c_3 (x-0)(x-32) + c_4 (x-0)(x-32)(x-34)

% + ... + c_18 (x-0)(x-32)...(x-114)

A = zeros(18,18);

A(1,1) = 1;

for i=2:18 % i = row index

prodx = 1;

for j=1:i % j = col index

A(i,j) = prodx;

prodx = prodx * (ts(i)-ts(j));

end

end

% to view checkable small chunk: A(1:3,1:3)

c = A \ y; % find coeffs: automatically recognizes triangular

% system and solves by forward substitution

% eval at input

x = year - 1885;

cost = c(1);

prodx = 1;

for j=2:18

prodx = prodx * (x - ts(j-1));

cost = cost + c(j) * prodx;

end

The degree 17 polynomial passing exactly through the data is a disaster. Here is one
way to plot it, along with an actually useful thing, namely a degree 4 polynomial which
closely fits the data:

>> stampdata

>> tf=1875:0.2:2010; zf=zeros(size(tf)); % fine grid for plotting

>> for j=1:length(tf), zf(j)=stamps(tf(j)); end

>> p4 = polyfit(t,y,4);

warning: dgelsd: rank deficient 18x5 matrix, rank = 4

>> plot(t,y,’o’,tf,zf,tf,polyval(p4,tf))

>> axis([1875 2010 -5 50]), grid on

This produces Figure 1, with the degree 17 polynomial off-scale in many places.
Now we are asked for the prediction, from this degree 17 polynomial, of when we will

hit price $1. I interpret this as “find the first time after the last price increase in 2001

3

Figure 1. The lousy degree 17 polynomial goes through all the data but
is not useful for interpolation, much less extrapolation. The least squares
degree 4 (regression) polynomial might be useful.

when the price hits $1.” This is a job that can be done by bisection, which is already
written, namely bis.m:

>> format long

>> stamps(2001)

ans = 33.9999999997599

>> f = @(x) stamps(x) - 100.0;

>> bis(2001,2001.1,f)

ans = 2001.02932726536

>> stamps(ans)

ans = 99.9999999999054

That is, the degree 17 polynomial “predicts” that the cost of a stamp is $1 about eleven
days (0.029 years) after it hit the price of 34 cents. Similar calculations give that the
cost is $10 a few months later. Dumb.

The degree 4 least squares (regression) polynomial would, not surprisingly, be more
useful on this “real data” problem, even though it does not pass through the data.

Exercise 1: Recall the theorem given in class:

Theorem. Suppose f is in C2[a, b] and a = x0 < x1 < · · · < xn = b.
If L(x) is the piecewise-linear interpolant through the points {(xj , f(xj)}
then for each x in [a, b],

|L(x)− f(x)| ≤ 1
2

(
max
a≤x≤b

|f ′′(x)|
) (

max
j=0,...,n−1

|xj+1 − xj |2
)
.

This problem asks you to apply this theorem and Lagrange’s theorem (page 315) and
compare the results. In all cases the full interval is [a, b] = [0, 1] so for polynomial
interpolation we have |x− xj | ≤ 1.

4

(a) n = 10 degree polynomial interpolation:

|f(x)−p10(x)| = |f
(11)(ξ)|
11!

|x−0| |x−0.1| |x−0.2| . . . |x−1.0| ≤ e−ξ

11!
111 ≤ e0

11!
=

1
11!

= 2.5×10−8

piecewise-linear interpolation:

|f(x)−L(x)| ≤ 1
2

(
max

0≤x≤1
|f ′′(x)|

) (
max
j
|xj+1 − xj |2

)
=

1
2

(
max

0≤x≤1
e−x

)
(0.1)2 =

1
2
e0(0.01) = 0.005

Clearly polynomial interpolation gets better fit with this many points on this function.

(b) n = 10 degree polynomial interpolation:

|f(x)− p10(x)| = |f
(11)(ξ)|
11!

|x− 0| |x− 0.1| . . . |x− 1.0| ≤ 711| cos(7ξ)|
11!

111 ≤ 711

11!
= 49.5

piecewise-linear interpolation:

|f(x)− L(x)| ≤ 1
2

(
max

0≤x≤1
|f ′′(x)|

) (
max
j
|xj+1 − xj |2

)
=

1
2

(
72

)
(0.1)2 = 0.245.

Here polynomial interpolation is struggling. Neither method gives great fit, but we know
in advance that piecewise-linear is not completely unreasonable.

(c) n = 25 degree polynomial interpolation:

|f(x)−p25(x)| = |f
(26)(ξ)|
26!

|x−0| |x−0.04| . . . |x−1.0| ≤ 726| sin(7ξ)|
26!

126 ≤ 726

26!
= 2.32×10−5

piecewise-linear interpolation:

|f(x)− L(x)| ≤ 1
2

(
max

0≤x≤1
|f ′′(x)|

) (
max
j
|xj+1 − xj |2

)
=

1
2

(
72

)
(0.04)2 = 0.0392.

Here polynomial interpolation has better accuracy than piecewise-linear.

(d) On the one hand, piece-wise linear interpolation accuracy is boring, and knowing
the subinterval length determines the error. On the other hand, for f(x) = sin(7x) the
error in n degree polynomial interpolation is more interesting. The difference between 11
points and 26 is very substantial. The error for polynomial interpolation comes from an
interplay of competing forces, and the 7n+1 term for n degree polynomial interpolation
competes with the magnitude of (n+ 1)! to determine the error size.

Exercise 2: (a) The degree 4 version works fine. I use polyfit only for brevity:
>> p = @(x) (x-1).*(x-2).*(x-3).*(x-4);

>> x = [0.1 0.9 1.4 3.14159, 4.1]; y = p(x);

>> polyfit(x,y,4)

ans =

1.00000 -10.00000 35.00000 -50.00000 24.00000

Note that the exact standard form of the polynomial is

p(x) = x4 − 10x3 + 35x2 − 50x+ 24,

so, by continuing the calculation I estimate the error as
>> max(abs(ans - [1 -10 35 -50 24]))

ans = 4.97379915032070e-14

(b) To do this we need to evaluate the polynomial in its compact form:

5

wilkp.m
function z = wilkp(x)

% WILKP Do a good job of computing values of the Wilkinson

% polynomial, by evaluating it in factored form.

z = ones(size(x));

for i=1:20

z = z .* (x - i);

end

The method of my choice, to find the coefficients of the same polynomial but in
standard form, is again polyfit, which internally is doing the Vandermonde method.
>> x = 0:20 + 0.141; y = wilkp(x);

>> AA = polyfit(x,y,20);

warning: matrix singular to machine precision, rcond = 1.7636e-32 ...

(c) As noted, I have written wilkinson.m to report the known coefficients in standard
form, so we continue the calculation, comparing computed to exact:
>> wilkinson % get stored coefficients a(j)

>> max(abs(AA - a))

ans = 1.38037597536407e+19

This is a huge error.

(Extra Credit) Running the following program shows that disaster happens sud-
denly. Degree 11 interpolation is essentially o.k. but degree 12 fails utterly. (I don’t
know why the transition is so sudden.)

wilkextra.m
% WILKEXTRA Solution to extra credit for Exercise 2, A#7.

errorzero = [];

for m=4:20

j = 0:m;

x = j + 0.141;

y = x - 1;

for k = 2:m

y = y .* (x - k);

end

a_computed = polyfit(x,y,m); % generates lots of warnings

exact = (-1).ˆm * factorial(m); % exact constant term in poly

errorzero = [errorzero abs(a_computed(end)-exact)];

end

semilogy(4:20, errorzero,’o’,’markersize’,14), grid on

xlabel(’degree’), ylabel(’error in constant term’)

