
Math 310 Numerical Analysis (Bueler) November 15, 2009

Selected Solutions to Assignment #6

Problems 4.3, exercise 3: In the given situation,

• PA is A with its rows swapped according to the permutation ~p = (p1, . . . , pn),
• P−1 is the matrix which undoes the permutation given by P , and also P−1 = P> (the transpose),
• AP is A with its columns swapped according to the inverse permutation of ~p,
• AP−1 is A with its columns swapped according to ~p, and
• PAP−1 is A with its rows and columns swapped according to ~p.

Problems 4.3, exercise 12: The matrices of this form, where the entries are zero everywhere more
than one location below the diagonal, are called “upper Hessenberg.” The point is that, as long as there
is no pivoting, solving such a system is only an O(n2) amount of work, instead of the usual O(n3) for
general Gauss elimination. My routine is:

hessen.m
function x = hessen(A,b);
% HESSEN Solve system A x = b by Gauss elimination and
% back-substitution, without pivoting, on matrices A with
% upper Hessenberg form * * * * *
% * * * * *
% A = 0 * * * *
% 0 0 * * *
% 0 0 0 * *

[n m] = size(A);
if n ˜= m, error(’A not square’), end
if size(b,2) ˜= 1, error(’b not a column vector’), end
if n ˜= size(b), error(’b wrong size’), end

for i = 2:n
for k = i+2:n
if A(k,i-1) ˜= 0, error(’not upper Hessenberg form’), end

end
r = A(i,i-1) / A(i-1,i-1); % the one multiplier per row
A(i,i:n) = A(i,i:n) - r * A(i-1,i:n); % implied loop over columns
b(i) = b(i) - r * b(i-1);

end

x = bs1(triu(A),b); % we’ve already got a back-sub routine

I tested it this way, which computes a relative error between the usual “A\b” result and the hessen(A,b)
result:

>> n=10; A=randn(n); A=triu(A,-1); b=rand(n,1); v=A\b; norm(v-hessen(A,b))/norm(v)

ans = 4.2490e-15

Note that triu(A) extracts the upper triangular part of a matrix, and triu(A,-1) extracts the upper
Hessenberg part; see help triu. I ran this test a few times, and the resulting relative errors were always
in the 10−16 to 10−14 range, which I interpret as success.

I counted the number of exact multiplications needed to solve n×n size systems Ax = b. (The number
of divisions is small by comparison, and the number of subtractions or additions is essentially the same
as multiplications.) I got

((n− 1) + (n− 2) + · · ·+ 2 + 1) + (n− 1) =
n(n− 1) + 2(n− 1)

2
=

(n + 2)(n− 1)
2

for multiplications in hessen.m itself, plus an additional

1 + 2 + · · ·+ (n− 2) + (n− 1) =
n(n− 1)

2



2

in bs1.m, which is called by hessen.m. The total number of multiplications to solve a system is 0.5(2n+
2)(n − 1) = (n + 1)(n − 1) = n2 − 1, which is much less than the (1/3)n3 + O(n2) we had for Gauss
elimination.

Problems 4.3, exercise 13: The algorithm is on page 180.
The number of divisions is 2(n− 1) + 1 + n− 1 = 3n− 2. The number of multiplications is one less,

3n−3. The number of subtractions is the same as the number of multiplications. There are no additions.
Thus the total number of arithmetic operations is 3n− 2 + 3n− 3 + 3n− 3 = 9n− 8.

But mainly you should take home that solving a tri-diagonal system is an O(n) operation, and therefore
dirt cheap compared to general Gauss elimination.

Problems 6.1, exercise 1ac: The very simplest way is to use the built-in thing, though I encourage
you to try your hand at one of the constructive methods. For the two parts I got:

>> polyfit([3 7],[5 -1],1)

ans =

-1.5000 9.5000

>> polyfit([3 7 1 2],[10 146 2 1],3)

ans =

5.1271e-16 5.0000e+00 -1.6000e+01 1.3000e+01

Thus p(x) = −1.5x+9.5 for part a and p(x) = 0x3 +5x2−16x+13 (which is actually quadratic . . . which
is fine) for part b.

Problems 6.1, exercise 26: This was an all-Matlab/Octave gig:

>> x = [0 0.5 1];

>> p = polyfit(x,x-9.^(-x),2)

p =

-0.88889 2.77778 -1.00000

>> roots(p)

ans =

2.70985

0.41515

Thus my guess for the solution is 0.41515, because the other root of the quadratic is outside of the
interval [0, 1]. (Then I did some quicky Newton’s method on x− 9−x = 0, with initial guess 0.41515, and
saw that the root must be very close to 0.408004405374381.)

Problems 6.1, exercise 16: Before writing code, let’s expand the expression:

u =
1∏

j=1

dj +
2∏

j=1

dj +
3∏

j=1

dj + · · ·+
n∏

j=1

dj = d1 + d1 d2 + d1 d2 d3 + · · ·+ d1 d2 · · · dn−1 dn.

This has a nested form:
u = d1 (1 + d2 (1 + · · ·+ dn−1(1 + dn) . . . )) .

The algorithm can now sum from the inside out:

sigmapi.m
function u = sigmapi(d);
% SIGMAPI Compute a certain sum of products:
% u = \sum_{i=1}ˆn \prod_{j=1}ˆi d_j

n = length(d);
if prod(size(d)) ˜= n, error(’d must be a vector’), end

u = d(n);
for i = n-1:-1:1
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u = d(i) * (1+u);
end

The code does exactly n − 1 multiplications and the same number of additions; it cannot be better. I
tested it this way:

>> x=[3 7 1 2]; sigmapi(x)

ans = 87

>> 3 + 3*7 + 3*7*1 + 3*7*1*2

ans = 87

Exercise 2: Sorry about repeatedly saying “built-in lu” when I meant “built-in det”.

(a) Trying out baddet.m, it seems to work fine but it is slow on an 8× 8 matrix:

>> A = magic(3); det(A), baddet(A)

ans = -360

ans = -360

>> abs(det(A) - baddet(A))/abs(det(A))

ans = 0

>> A = randn(8); abs(det(A) - baddet(A))/abs(det(A))

ans = 1.8954e-16

The third input line takes 10 seconds or so to run. It is easy to check it is all spent computing baddet(A).
I compute that if Mn is the number of multiplications in baddet.m on an n× n matrix then, because

we have to compute n determinants of (n − 1) × (n − 1) minors, and then do an additional n scalar
multiplications to combine the results,

Mn = n ·Mn−1 + n,

a recurrence relation. Clearly M1 = 0 and M2 = 2 just by thinking about those cases separately. By
using the recurrence relation, M3 = 9, M4 = 40, M5 = 205, and so on.

Though it is not really as useful as the recurrence, we have

Mn = n!
(

1 +
1
2

+
1
3!

+ · · ·+ 1
(n− 1)!

)
.

Interestingly, this means Mn ∼ (e− 1) n! as n→∞.

(b) First we need to know that the determinant of an n × n triangular matrix is the product of its
diagonal elements. (This can be shown by expanding-in-minors from the first row for lower triangular
matrices, and from the first column for upper triangular matrices.) Thus det(L) = 1 and det(U) =
u11 · · ·unn. Therefore if A = LU we have det(A) = det(L) det(U) = 1 · u11 · · ·unn =

∏n
j=1 ujj . On

the other hand, the determinant of a permutation matrix is either +1 or −1 according to whether the
number of row swaps which generated it (from the identity) is either even or odd, respectively. Thus
when PA = LU we have

det(A) = (−1)(number of row swaps)
n∏

j=1

ujj .

(c) It was easy to write gooddet.m except that the number of row swaps was hard to determine from
the P that came from the built-in lu. So I went ahead and wrote my own little method to find the
determinant of P. (Note, however, that if we have control of the LU decomposition then it is quite trivial
to keep track of the number of row swaps. I will be very forgiving on this issue when grading.)

gooddet.m
function z = gooddet(A)
% GOODDET z = gooddet(A)
% Compute determinant by LU decomposition (Gauss elimination).
% O(nˆ3) work instead of O(n!) like baddet.m
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% Essentially, this is the built-in method for determinant.

n = size(A,2); % get number of columns
if n == 1, z = A(1,1); return, end % finish easy case of 1x1 matrix

[L,U,P] = lu(A);
s = detperm(P); % replacement "s = det(P);" is fine, though "cheating"
z = s * prod(diag(U));

detperm.m
function s = detperm(P)
% DETPERM Compute the determinant of a permutation matrix.
% (Merely needed to compute sign in gooddet.m.)

[n m] = size(P);
if n ˜= m, error(’not square’), end
if n == 1, s = 1; return, end

k = find(P(1,:)); % column index of "1" in first row
if length(k) > 1, error(’not a permutation matrix’), end
s = (-1)ˆ(k-1);
for j=2:n-1

% replace P by the minor:
if k == 1
P = P(2:end,2:end);

elseif k == size(P,2)
P = P(2:end,1:end-1);

else
P = P(2:end,[1:k-1, k+1:end]);

end
k = find(P(1,:));
if length(k) > 1, error(’not a permutation matrix’), end
s = s * (-1)ˆ(k-1);

end

Properly implemented, the Gauss elimination done by the built-in lu call dominates the time in
gooddet.m. Recall that Gauss elimination takes (1/3)n3 + O(n2) multiplications. I conclude that on a
n× n matrix,

(# mults for baddet.m)
(# mults for gooddet.m)

=
n!
(

1 + 1
2 + 1

3! + · · ·+ 1
(n−1)!

)
1
3n3 + O(n2)

∼ 3(e− 1)n!
n3

.

For n = 30 this last fraction is about 5× 1028, which might as well be ∞. (You won’t often hear a math
professor say such a thing . . . )


