
Math 310 Numerical Analysis (Bueler) November 5, 2009

Assignment #6
DUE Friday 13 November, 2009 at 5pm

Goal of this assignment: Actually understand LU decomposition as Gauss
elimination. Learn basics of polynomial interpolation.

Exercise 1. Just a reading exercise, but important to the rest, and to clarify what you are
responsible for.

(a) Re-read section 4.1 of Kincaid & Cheney. Again you can skip the “Partititioned
Matrices” subsection.

(b) Read section 4.3 of Kincaid & Cheney, specifically pages 163–177. You are responsible
for the subsections titled “Basic Gaussian Elimination”, “Pivoting”, “Gaussian Elimination
with Scaled Row Pivoting”, “Factorizations PA = LU”, and “Operation Counts”, all of which
closely follow lecture. Note that “scaled row pivoting” is a slight improvement on what I called
“partial pivoting”; in the case of scaled row pivoting one asks for the largest entry in a column,
but relative to the other entries in the row. Also, you are also responsible for the subsection
“Tridiagonal System”, which is very easy and which I have not already covered in lecture.
(You are not responsible for the subsections “Gaussian Elimination with Complete Pivoting”
and “Diagonally Dominant Matrices”, but they are understandable and you may find them
interesting.)

Problems 4.3, exercise 1ac. (Either do these actually by-hand, or use Matlab/Octave

to explicitly execute each row operation, by building elementary matrices and applying them.
Check your own work using the built-in lu, or the codes lutx.m and modlutx.m, but do not
show me the result of that, because I will do it myself when grading.)

Problems 4.3, exercise 3. (“Describe” means give a clear, general description of the
effects on a generic matrix A. Do not just give an example.)

Problems 4.3, exercise 12.

Problems 4.3, exercise 13.

Problems 4.3, exercise 18. The final part of the question, which I am stating explicitly
so that you know what to answer, is: How close together are A1 and A2? How close together
are the solutions x1 and x2 to the systems A1x1 = b and A2x2 = b? Comment, and relate to
a meaning of “unstable”.

Problems 6.1, exercise 1ac.

Problems 6.1, exercise 22.

Problems 6.1, exercise 26.

Problems 6.1, exercise 16.



2

Exercise 2. Before doing the parts below, first learn how to compute determinants by
expansion in minors, also called cofactors, if you do not already know that method. You
might find the explanation in a calculus book is good enough. This 3 × 3 example should
suffice to remind you or give you the idea completely:

det

1 2 3
4 5 6
7 8 9

 = +1 · det
([

5 6
8 9

])
− 2 · det

([
4 6
7 9

])
+ 3 · det

([
4 5
7 8

])
= 1 · (5 · 9− 6 · 8)− 2 · (4 · 9− 6 · 7) + 3 · (4 · 8− 5 · 7) = (−3)− 2(−6) + 3(−3) = 0

(a) It is amazingly easy to write a determinant code using expansion in minors. In particular,
we break the job of computing a determinant is into sub-jobs, each the computation of a smaller
determininant:

baddet.m
function z = baddet(A)

% BADDET Compute determinant by expansion in minors.

n = size(A,2); % get number of columns

if n == 1, z = A(1,1); return, end % finish easy case of 1x1 matrix

z = 0; s = +1;

for j = 1:n

% get minor, by removing first row and jth column:

minor = [A(2:end,1:j-1) A(2:end,j+1:end)];

z = z + s * A(1,j) * baddet(minor);

s = s * -1;

end

Note that this code calls itself to do a number of smaller jobs.
Run baddet.m on A = magic(3) and on a 8×8 random matrix A = randn(8), and compare

the result to Matlab/Octave’s built in lu. Next, count the number of scalar multiplications
needed to compute the determinant of a 3×3 matrix using baddet.m. (Ignor all the multiplica-
tions by “s”, which merely change signs. If needed, you can add a print statement to help you
count, but show me easy-to-grade and clear results.) Now, how many scalar multiplications
are needed to compute the determinant of an n× n matrix using baddet.m?

(b) For square matrices A,B of the same size, it turns out to be true that:

det(AB) = det(A) det(B).

Now suppose that A = LU , where L and U come in the usual way from Gaussian elimination
without pivoting. Show that in this case det(L) = 1. Also, show that if ujj are the diagonal
entries of U then

det(A) =
n∏

j=1

ujj .

Finally, modify this idea to compute the determinant of A if we have done pivoting so that
PA = LU , noting that det(P ) = ±1; your result will be a very small modification of the above
product formula.

(c) Write a Matlab/Octave code gooddet.m, which uses the ideas in the previous part,
and does the built-in LU-decomposition “[L,U,P]=lu(A)”, as its first step. How much faster
is your code than baddet.m on a 30× 30 matrix? (In theory. There is no way to answer this
experimentally, is there? ) You have now written the Matlab/Octave built-in lu, essentially.


