
Math 310 Numerical Analysis (Bueler) October 29, 2009

Solutions to Assignment #5

Problems 4.1, exercise 1: Can we swap rows by adding and subtracting rows, and multi-
plying by scalars λ = ±1 only? Fiddling around a bit was required for me to get this! I imagine
there are other possibilities, but I propose:

Ri ↔ Rj ⇐⇒

(1) Rj ← Rj +Ri

(2) Ri ← −Ri

(3) Ri ← Ri +Rj

(4) Rj ← Rj −Ri

That is, to do the type I swap operation Ri ↔ Rj , we: do a type III operation, then a type II
operation, and then two type III operations. In all cases λ = ±1.

To check my work I have to invent notation for the new rows. In particular, the operations
can be re-written this way, denoting the successive new rows with tildes:

Ri ↔ Rj ⇐⇒

(1) R̃j = Rj +Ri

(2) R̃i = −Ri

(3) ˜̃Ri = R̃i + R̃j

(4) ˜̃Rj = R̃j − ˜̃Ri

Now we can simplify to see that the new jth row is the old ith row, and vice versa:
˜̃Rj = (Rj +Ri)−

(
R̃i + R̃j

)
= (Rj +Ri)− (−Ri + (Rj +Ri)) = (Rj +Ri)− (Rj) = Ri,

˜̃Ri = R̃i + R̃j = (−Ri) + (Rj +Ri) = Rj .

Problems 4.1, exercise 3: (This fact was alluded-to in the lecture, when I said that the
inverse of an elementary matrix is an elementary matrix of the same type.) The inverse of an
elementary matrix of type I is that same matrix. The inverse of an elementary matrix of type II
has the same form but with “1/λ” replacing “λ” in the one diagonal entry which is not 1. Finally,
the inverse of a type III elementary matrix is of the same form but has “−λ” replacing “λ” in
the one off-diagonal entry which is not 0.

Problems 4.1, exercise 6: A monomial matrix can be built from a product of elementary
matrices. Thus its inverse can be built the same way, and thus the inverse exists.

In this course a sufficiently-general example suffices, so here is one. If A is the monomial matrix

A =

 0 0.1 0
−2 0 0
0 0 345.67


then

A =

0 1 0
1 0 0
0 0 1

−2 0 0
0 1 0
0 0 1

1 0 0
0 0.1 0
0 0 1

1 0 0
0 1 0
0 0 345.67

 .
Thus A is the product of an elementary matrix of type I times three of type II. (It is generally
true that monomial matrices are products of type I and type II elementary matrices.) Thus A is
invertible, which is to say non-singular.



2

Computer Problems 4.1, exercise 2: (b) In my version of “Prod” below, I have chosen
to have the procedure itself check the sizes, so that the user does not need supply m and n:

prodELB.m
function y = prodELB(A,x)

% PRODELB Matrix-vector product. Checks sizes before

% computing product. A primitive re-implementation

% of built-in A*x. See Kincaid & Cheney CP 4.1 #2b.

% Example: >> A = rand(4,6), x = rand(6,1), y = prodELB(A,x)

[m n] = size(A);

if n ˜= size(x,1), error(’A and x incompatible sizes’), end

y = zeros(m,1);

for i = 1:m

for j = 1:n

y(i) = y(i) + A(i,j) * x(j);

end

end

(c) Equally straightforward:

multELB.m
function C = multELB(A,B)

% MULTELB Matrix-matrix product. Checks sizes before

% computing product. A primitive re-implementation

% of built-in A*B. See Kincaid & Cheney CP 4.1 #2c.

% Example: >> A = rand(4,6), B = rand(6,2), C = multELB(A,B)

[k m] = size(A);

[M n] = size(B);

if m ˜= M, error(’A and B incompatible sizes’), end

C = zeros(k,n);

for i = 1:k

for j = 1:n

for k = 1:m

C(i,j) = C(i,j) + A(i,k) * B(k,j);

end

end

end

Notes. We see clearly that a matrix-vector product requires mn multiplications and that a
matrix-matrix product requires kmn multiplications, for the sizes here. (Or is that really true? )

Regarding the input arguments as listed in Kincaid & Cheney, namely “Prod(m,n,A, x, y)”
and so on, it might help to know that for a language like Fortran77 or C one needs to supply
the sizes as arguments. This fact is because an input “matrix” A to some procedure would
actually be just an address to a location in memory, and a code needs to know how to set up
the “for” loops which go through all the elements. Also, inputs like x and outputs like y, in
“Prod(m,n,A, x, y)”, can both be supplied as arguments to procedures. Modern languages fix up
this situation in various ways. Matlab/Octave is designed to make numerical linear algebra
easy, so things are convenient here.


