
Math 310 Numerical Analysis (Bueler) October 27, 2009

Selected Solutions to Assignment #4

Exercise 1: (It is o.k. for there to be a fair number of variations on this solution among your work.
Here is just my sample.)

(a) We apply Newton’s method to f(x) = x2 − S for S > 0, to get

xn+1 = xn −
f(xn)
f ′(xn)

= xn −
x2

n − S
2xn

= xn −
(
xn

2
− S

2xn

)
=

1
2

(
xn +

S

xn

)
.

Thus xn+1 is an average, of xn and the ratio S/xn. (The ratio is xn if xn =
√
S.) To compute xn+1 we

do exactly three operations, the division S/xn, the sum, and then another division by two.
Because f(x) is increasing and concave up for x > 0, Newton’s method will converge for any positive

initial guess. Regarding a good initial guess, however, note that S is represented inside a computer as
S = a × 2b, where 1 ≤ a < 2 and b is an integer, so

√
S =

√
a × 2b/2 exactly. In fact, the smallest

such a used in representing S is 1.000 . . . 0002 and the largest is 1.111 . . . 1112. Therefore I suggest that
x0 = 1.000 . . . 0002 × 2b/2 if b is even and x0 = 1.000 . . . 0002 × 2(b−1)/2. Thus we actually ignor a in
generating x0; the main idea is to get the magnitude about right for an initial guess about the square
root

√
S.

(b) My longer-than-necessary sample lesson:

The square root of a number is a number whose square is the first number. For example,
the square root of 9 is 3 because 3× 3 = 9. We write

√
9 = 3.

Some integers are perfect squares, like 4, 9, 36, 81 which are the squares of 2, 3, 6, 9.
Perfect squares have integer square roots, of course. Other numbers, like 28, for example,
will have square roots which are not integers.

How should we find
√

28 in practice? The first thing to notice is that 25 < 28 < 36 so
5 <
√

28 < 6. Therefore we expect that
√

28 ≈ 5.2, or something, just by where 28 lies
between 25 and 36. To get better accuracy, there is a rule called the mechanic’s rule for
computing more digits. It gives new values from old values:

[new] =
1
2

(
[old] +

28
[old]

)
.

It requires an initial guess, the first value for “[old]”. If that first value is close to the
right number then doing the mechanic’s rule just a couple of times gets a very accurate
estimate of the square root.

Let us use 5 as our initial guess for
√

28, though 5.2 would work better. Then

[new] =
1
2

(
5 +

28
5

)
=

1
2

(
25
5

+
28
5

)
=

53
10

= 5.3.

Again, and using long division to compute 28/5.3 = 280/53 ≈ 5.2830,

[new] =
1
2

(
5.3 +

28
5.3

)
=

1
2

(5.3000 + 5.2830) = 5.2915.

This is a correct five digit approximation to
√

28. We can check its accuracy by multiply-
ing 5.2915× 5.2915 = 27.99997225. (More complete calculations say

√
28 ≈ 5.29150262.)



2

Why does the mechanic’s rule work? It replaces a guess for the square root by the
average of two numbers, the guess itself and the ratio of the original number and the
guess. If the guess is low then the average is with a larger number, and vice versa. So
the next value is sure to be a better estimate of the root.

Exercise 2: (a) A more efficient code, including an example within the “help file” comments (which
is a recommended programming practice!):

secantfast.m
function x = secantfast(f,x0,x1)

% SECANTFAST More efficient secant method. Solves f(x) = 0.

% Requires two initial guesses x0 ˜= x1. Seeks only 8 digit accuracy.

% Only one function evaluation per step. Reports intermediate estimates for x.

% Example:

% >> format long

% >> secantfast(@(x) x-cos(x), 0.7, 0.8)

% x = 0.738565440250903

% x = 0.739078362144669

% x = 0.739085133992362

% x = 0.739085133215159

% ans = 0.739085133215159

% >> fsolve(@(x) x-cos(x), 0.7) % compare to built-in

% ans = 0.739085133215161

f0 = feval(f,x0);

while abs(x0-x1)/abs(x1) > 1e-8

f1 = feval(f,x1);

x = x1 - f1 * (x1 - x0) / (f1 - f0)

x0 = x1;

f0 = f1;

x1 = x;

end

(b) My robustified code. I learned again in doing this that how “robust” your code is mostly has to do
with how many cases you have tested it on! Frankly, it is just too complicated. Note I used sub-functions
to do jobs within the code:

frobust.m
function c = frobust(f,a,b)

% FROBUST Putatively robust combination of secant method

% and bisection. To solve f(x) = 0. Requires bracket

% to get started. Goal is to produce bracket with

% length less than 10ˆ-12.

% Easy example; much faster than bisection:

% >> frobust(@(x) x-cos(x), 0.7, 0.8)

% Easy example but motivates subtle cases below:

% >> frobust(@(x) abs(x) - 2, -1, 3)

% Hard example; complex behavior but success; plot this fcn to see:

% >> frobust(@(x) abs(sin(4*x))- 0.2*x - 0.1,-1,3)

% Impossible example; THINKS it has a root, but it doesn’t; evaluate f to see:

% >> frobust(@(x) sin(1e16*x), -1, 1.05)

fa = feval(f,a);

fb = feval(f,b);

if sign(fa) == sign(fb), error(’not a bracket!’), end

printf(’ initial bracket [%15.12f, %15.12f]\n’, a, b)

while abs(b-a)/max([abs(a) abs(b)]) > 1e-12

c = b - fb * (b - a) / (fb - fa)

fc = feval(f,c);

if (c >= a) & (abs(c-a) < 1e-12)

% c is nearly same as a; try to move b very close to a

[b, fb] = tryreduce_moveb(f,a,b,fb,min(a + 3e-12,b));



3

elseif (c <= b) & (abs(b-c) < 1e-12)

% c is nearly same as b; try to move a very close to b

[a, fa] = tryreduce_movea(f,a,b,fa,max(b - 3e-12,a));

end

if (c > a) & (c < b) & (abs(fc) < min(abs(fa),abs(fb)))

% accept c because it is in (a,b) and has better fcn value

if (b - c) < 0.1 * (b - a)

% if c is close to b, try to shrink the bracket by moving a

[a, fa] = tryreduce_movea(f,a,b,fa,b - 3 * (b - c));

elseif (c - a) < 0.1 * (b - a)

% if c is close to a, try to shrink the bracket by moving b

[b, fb] = tryreduce_moveb(f,a,b,fb,a + 3 * (c - a));

end

% now update bracket

if sign(fc) == sign(fa)

a = c; fa = fc;

printf(’ secant step (move a); new bracket [%15.12f, %15.12f]\n’, a, b)

else

b = c; fb = fc;

printf(’ secant step (move b); new bracket [%15.12f, %15.12f]\n’, a, b)

end

else

% reject c; do bisection

c = (a + b)/2;

fc = feval(f,c);

if sign(fc) == sign(fa)

a = c; fa = fc;

else

b = c; fb = fc;

end

printf(’ bisection step; new bracket [%15.12f, %15.12f]\n’, a, b)

end

end

function [a, fa] = tryreduce_movea(f, a, b, fa, atry);

fatry = feval(f,atry);

if (sign(fatry) == sign(fa)) & (abs(fatry) < abs(fa))

a = atry; fa = fatry;

printf(’ reduce step (move a); new bracket [%15.12f, %15.12f]\n’, a, b)

end

function [b, fb] = tryreduce_moveb(f, a, b, fb, btry);

fbtry = feval(f,btry);

if (sign(fbtry) == sign(fb)) & (abs(fbtry) < abs(fb))

b = btry; fb = fbtry;

printf(’ reduce step (move b); new bracket [%15.12f, %15.12f]\n’, a, b)

end

Moler exercise 2.1: We solve the system

3a+ 12b+ c = 2.36

12a+ 2c = 5.26

2b+ 3c = 2.77

using Matlab/Octave. In few symbols:

>> format bank

>> [3 12 1; 12 0 2; 0 2 3] \ [2.36 5.26 2.77]’

ans =

0.29



4

0.05

0.89

So apples are 29 cents, bananas 5 cents, and cantaloupes 89 cents. (Not AK prices . . . )

Moler exercise 2.3: We set up the system with f3, f6, f7, f8, f11, f13 not present, because we either
know their values or can get them from other values:

αf1 − f4 − αf5 = 0

αf1 + αf5 = −10

f2 + αf5 − αf9 − f10 = 0

αf5 + αf9 = 15

f4 + αf9 − αf12 = 0

αf9 + αf12 = −20

f10 + αf12 = 0

The unknowns in this system are f1, f2, f4, f5, f9, f10, f12.
I put this into an m-file, instead of editing it at the command line, because of the ability to format

for clarity:

exertwo3.m
% EXERTWO3 Exercise 2.3 in Moler.

alf = 1/sqrt(2);

A = [alf 0 -1 -alf 0 0 0;

alf 0 0 alf 0 0 0;

0 1 0 alf -alf -1 0;

0 0 0 alf alf 0 0;

0 0 1 0 alf 0 -alf;

0 0 0 0 alf 0 alf;

0 0 0 0 0 1 alf];

b = [0 -10 0 15 0 -20 0]’;

x = A \ b;

f = [x(1) x(2) 10 x(3) x(4) x(2) 0 x(3) x(5) x(6) 20 x(7) x(6)]’

The result is this list, f1, . . . , f13:

f =

-28.28427

20.00000

10.00000

-30.00000

14.14214

20.00000

0.00000

-30.00000

7.07107

25.00000

20.00000

-35.35534

25.00000

Now, in “real” engineering life, the linear system would never be seen by the engineer. Rather, a structure
would be entered into a computer-aided design (CAD) system element-by-element by the engineer; that



5

would be the actual work specific to the structure. (Each “element” is a beam with certain dimensions
and material properties, in this case, but such elements might also include fasteners and cables and such.)
Then a system of linear equations would be automatically assembled by part of the CAD program, and
then this set of linear equations would be solved by a routine, like “A\b”, but invisibly to the engineer
except that the computed forces would appear on each element, in the display of the structure. My
point is that both the assembly of the linear system, and its solution by numerical methods, are parts of
engineering software.

Moler exercise 2.8: It is easy to get this wrong! First I modified the code:

modlutx.m
function [L,U,p] = modlutx(A)

%MODLUTX Triangular factorization. Modified lutx; this has bland for loops.

% [L,U,p] = modlutx(A) produces a unit lower triangular matrix L,

% an upper triangular matrix U, and a permutation vector p,

% so that L*U = A(p,:)

[n,n] = size(A);

p = (1:n)’;

for k = 1:n-1

% Find index of largest element below diagonal in k-th column

[r,m] = max(abs(A(k:n,k)));

m = m+k-1;

% Skip elimination if column is zero

if (A(m,k) ˜= 0)

% Swap pivot row

if (m ˜= k)

for j = 1:n

temp = A(k,j);

A(k,j) = A(m,j);

A(m,j) = temp;

end

temp = p(k);

p(k) = p(m);

p(m) = temp;

end

% Compute multipliers

for i = k+1:n

A(i,k) = A(i,k)/A(k,k);

end

% Update the remainder of the matrix

for i = k+1:n

for j = k+1:n

A(i,j) = A(i,j) - A(i,k)*A(k,j);

end

end

end

end

% Separate result

L = tril(A,-1) + eye(n,n);

U = triu(A);

Then I tested it. In particular,

>> A=rand(5); [L,U,p]=lutx(A); [L U], [L,U,p]=modlutx(A); [L U], [L,U,p]=lu(A); [L U]



6

produces three versions of the LU decomposition for the same, which should be identical. After correcting the

bugs I introduced, they were.

Now the timing. I used Octave, and your results may vary! I tried merely to get the time between 10 and 11

seconds, and I repeated the runs at least once to convince myself of the timing:

>> A=rand(100); tic, modlutx(A); toc

Elapsed time is 10.825 seconds.

>> A=rand(100); tic, modlutx(A); toc

Elapsed time is 10.795 seconds.

>> A=rand(760); tic, lutx(A); toc

Elapsed time is 10.181 seconds.

>> A=rand(760); tic, lutx(A); toc

Elapsed time is 10.28 seconds.

>> A=rand(1850); tic, lu(A); toc

Elapsed time is 10.636 seconds.

>> A=rand(1850); tic, lu(A); toc

Elapsed time is 10.619 seconds.

Clearly the built-in lu is much faster than the others, and the for loops in modlutx slow it down a lot.
We will learn that the underlying algorithm of LU decomposition requires O(n3) operations, so for a

fixed code we expect that doubling the size of the matrix will cause a slow-down by a factor of 8.
I will explain in class more about the LU decomposition, which is the numerical analyst’s preferred

form of Gauss elimination.

Moler exercise 2.9: Too hard, sorry. Not graded. Will appear on a later assignment, after I have
returned your work to you.


