
Math 310 Numerical Analysis (Bueler) October 19, 2009

Assignment #4
DUE Friday 23, 2009

Goal of this assignment: Finish up some “solve f(x) = 0”

ideas. Start to use Matlab/Octave for vectors and matrices and linear

algebra.

Exercise 1. The “mechanic’s rule” approximates
√

S using only elementary arith-

metic (i.e. the operations +,−, · ,÷). It is also called the “Babylonian method” be-

cause it has been known for that long. It turns out to be the Newton method applied

to the equation x2 − S = 0. For more information, feel free to Google, especially:

http://en.wikipedia.org/wiki/Methods_of_computing_square_roots.

(a) First, derive the rule. Simplify the Newton iteration as much as possible, so

that only three elementary arithmetic operations are required to compute xn+1 from xn.

Address how to get an initial guess x0, specifically working from the expression of S

in scientific notation, and considering any positive S. (Or use the IEEE floating point

form of S, if you know that.) Obviously do not use exponential, logarithm, or power

functions to generate the initial guess x0.

(b) Now write a very short lesson on the “mechanic’s rule”: Use at most half a

page of paper to do these three things: (i) introduce the problem of finding a square

root, (ii) introduce the mechanic’s rule as an easy-to-follow recipe, and (iii) show a

worked example. (Assume that nothing but pencil and paper are available. Show by

your example that you can get at least 4 digit accuracy in very few steps. Explain how

to choose the initial guess carefully to avoid excess arithmetic. Your example problem

should find the square root of an integer 20 ≤ S ≤ 99; S should not be an exact square.

Finally, assume your reader only knows basic arithmetic. Can you give any hint why

the rule works, given these assumptions? )

http://en.wikipedia.org/wiki/Methods_of_computing_square_roots


2

Exercise 2. (a) Write a more efficient secant method than provided in class.

That is, store old function values so that each secant iteration involves only one (new)

function evaluation. Also write your Matlab/Octave program to accept a function as

an input argument. (To see the secant method as constructed in class, see http://www.

dms.uaf.edu/~bueler/class14oct.m. An example code that I have already written

which uses a function as an input is this one, for bisection: http://www.dms.uaf.edu/

~bueler/bis.m.)

(b) Now please try your hand at writing a reasonably robust Matlab/Octave

function which takes a function f and a bracket—that is, an interval [a, b] with a < b and

f(a)f(b) < 0—and applies a hybrid of bisection and secant method to solve f(x) = 0.

(In particular, your Matlab/Octave function will only evaluate f(x), but not f ′(x).

It will maintain the bracket while it attempts to use the secant method to produce much

faster convergence than bisection. Please demonstrate that it works on at least two

examples, one a situation in which it is much faster than bisection, and the other in

which f ′(x) does not exist at at least one point in [a, b], so that Newton method would

be a suspect algorithm choice. Can you also find an example where it fails, even though

you start with a continuous f and a legal bracket? )

Now do these exercises from Moler, Numerical Computing with MATLAB.

(Note chapter 2 of is free online at http://www.mathworks.com/moler/lu.pdf.):

• exercise 2.1.

• exercise 2.3.

• exercise 2.8.

• exercise 2.9.

http://www.dms.uaf.edu/~bueler/class14oct.m
http://www.dms.uaf.edu/~bueler/class14oct.m
http://www.dms.uaf.edu/~bueler/bis.m
http://www.dms.uaf.edu/~bueler/bis.m
http://www.mathworks.com/moler/lu.pdf

