
Math 310 Numerical Analysis (Bueler; October 21, 2009)

Selected Solutions to Assignment #3

Note. Sometimes I will list problems in other than the usual order. That is usually a suggestion

that you start with the easiest and work toward the hardest.

Problems 3.2, exercise 9. Newton’s method simplifies:

xn+1 = xn −
x3

n − 2
3x2

n

=
2
3

(
xn +

1
x2

n

)
It follows that x0 = 1, x1 = 4/3, and

x2 =
2
3

(
4
3

+
9
16

)
≈ 1.26388.

Note that 3
√

2 ≈ 1.25992.

Problems 3.2, exercise 10. Apply Newton’s method to the equation x3 − R = 0. Again we might
simplify:

xn+1 = xn −
x3

n −R

3x2
n

=
2
3
xn +

R

3
x−2

n

But the main idea is to produce a good picture. By drawing several graphs like the one shown in Figure
1 below, which happens to use R = 3 and show x0 = 1, and x1, x2 from the Newton iteration, I got
an intuitive sense that if x0 > 0 then the iteration eventually converges. In fact, if R > 1 then x0 = 1
always leads to x1 > 3

√
R because the curve is convex, and then x1 > x2 > . . . from then on. (A

slight modification of Theorem 2 could then prove that the Newton iteration converges, but this is not
necessary.) If 0 < R < 1 then x0 = 1 also works, and 1 = x0 > x1 > x2 >

Figure 1. A graph of x0 = 1 and x1, x2 from Newton’s method, for f(x) = x3 − 3.

2

Problems 3.2, exercise 1. The solution of arctan x = 0 is x = 0, so that is the value we want to
come out of Newton. So to start, let us write down Newton’s method and simplify slightly:

xn+1 = xn −
arctan(xn)(

1
1+x2

n

) = xn − arctan(xn)(1 + x2
n)

Now, some trial-and-error and/or some graphing leads to the understanding that Newton’s method
always generates a sequence {xn} with alternating sign, but that for x0 of not-to-big size, xn → 0. For
larger x0 we get an alternating but diverging sequence.

The critical value, the “smallest positive starting point for which Newton diverges,” is the place where
xn+1 = −xn. That is, cycling occurs when the next value is the same distance from the origin, but on
the other side. To find this location we solve the equation “xn+1 = −xn” for that special starting point
xn = s:

−s = s− arctan(s)(1 + s2) or 0 = 2s− arctan(s)(1 + s2).

How to find s? Use Newton’s method! The following sequence produces Figure 2, as well as finding
that s ≈ 1.3917:
>> x=-5:0.001:5;
>> plot(x,atan(x)), grid on
>> f = @(x) 2*x - atan(x) .* (1+x.^2);
>> df = @(x) 1 - 2 * x .* atan(x);
>> format long g
>> s = 1.0, for k=1:10, s = s - f(s)/df(s), end
s = 1
s = 1.75193839388411
...
s = 1.39174520027073
>> hold on, plot([-s s],[0 atan(s)],’r’,[-s s],[atan(-s) 0],’r’), hold off

Figure 2. A graph of y = arctan(x) and of the tangent lines that lead to cycling in
Newton’s method.

3

Problems 3.2, exercise 6. First state and simplify Newton’s method:

xn+1 = xn −
x−1

n −R

−x−2
n

= xn + (x−1
n −R)x2

n

= 2xn −Rx2
n = xn · (2−R · xn)

The last form is written to emphasize that we need to do two multiplications and one subtraction in
order to get xn+1 from xn.

How to get a staring point? Consider only R > 0 for simplicity. A bit of trial-and-error or graphing
shows that starting points that are not much larger than 1/R lead to negative values for xn at some stage,
and then divergence. So we need a recipe for generating a starting point x0 in the interval 0 < x0 < 1/R,
but without knowing 1/R, which is cheating.

My practical suggestion is that we may suppose that the number R is represented already in scientific
notation (or internally floating point form). In that case, we know

R = a× 10k

where 1 ≤ a < 10. For such R I propose this starting point,

x0 = 10−k−1.

It is always in the interval 0 < x0 < 1/R (why?), and not too close to zero because it is within a factor
of 10 of the correct answer (why?).

The algorithm is a running Matlab/Octave code below. It has the caveat that the call to log10
is obviously silly, and would be replaced in “real” applications with a bit manipulation involving the
internal storage of R. Note that some calculators actually use a scheme like this to avoid complex
division circuitry:

recip.m

function z = recip(R)

% RECIP Use Newton to invert: R -> 1/R. Requires R > 0.

k = floor(log10(R)) % an actual application would use internal

x = 10^(-k-1) % representation of R to get this starting point

for j=1:10

x = x * (2 - R * x)

end

z = x

Problems 3.2, exercise 14. A sufficient hint for this one was given in class.

Problems 3.2, exercise 17. In each case compute

lim
n→∞

|xn+1|
|xn|2

.

If this quantity is +∞ then the sequence must converge to zero slower than quadratically because |xn+1| ≤
C|xn|2 is not true for any C.

By this standard only b. even could be quadratic, and it is:
1

2(2n+1)

1
(2(2n))2

=
22(2n)

2(2n+1)
=

2(2n+1)

2(2n+1)
= 1.

This shows xn+1 = (xn)2, which is obvious in retrospect.

4

The only other “interesting” limit is in e., as follows:

lim
n→∞

(n + 1)−(n+1)

(n−n)2
= lim

n→∞

n2n

(n + 1)n+1
= lim

n→∞

(
n

n + 1

)n (
n

n + 1

) (
nn−1

)
= e−1 · 1 · (+∞) = +∞.

(Why is

lim
n→∞

(
n

n + 1

)n

= e−1 ?
)

Computer Problems 3.2, exercise 1. The only issue it the production of starting points, which
are necessarily different for the two roots we seek. In fact, here is the solution of Computer Problems
3.2 #2, which asks for the first ten solutions of x = tan(x), starting at x = 0, which is a root:

tentanroots.m

% TENTANROOTS Use Newton to find 10 distinct solutions to x = tan(x)

roots = [0]; % record the obvious root

% the function and its derivative

f = @(x) x - tan(x);

df = @(x) 1 - sec(x).^2;

% loop over which one we are finding

for k=1:9

x = (2*k+1 - 0.01) * pi/2; % starting point just left of (odd)*pi/2

% loop to do Newton iteration

for j=1:10

x = x - f(x) / df(x);

end

roots = [roots x];

end

roots = roots’

residuals = abs(f(roots))

The result is
roots =

0
4.49340945790906
7.72525183693771
10.9041216594289
14.0661939128315
17.2207552719308
20.3713029592876
23.519452498689
26.6660542588127
29.811598790893

and the largest of the residuals is about 10−12.

Computer Problems 3.2, exercise 3. First plot y = f(x) where

f(x) =
tan x

x2
.

Find the minimum by solving the equation

f ′(x) = 0 which is, after simplifying,
x sec2 x− 2 tan x

x3
= 0.

5

Thus we apply Newton’s method to the function

g(x) =
x sec2 x− 2 tan x

x3
.

(This function, and its derivative, can be checked by entering (tan(x)/(x^2))’ and (tan(x)/(x^2))’’,
respectively, into Wolfram Alpha at http://www.wolframalpha.com/. I don’t screw around if getting
it wrong will waste my time . . .)

The program:

hardmin.m

% HARDMIN Use Newton to find minimum of f(x) = (tan x) / (x^2)

% by solving f’(x) = 0.

% the original function

f = @(x) x.^(-2) .* tan(x)

% draw a picture which explains starting point

x = 0:0.001:2;

figure(1)

plot(x,f(x))

axis([0 2 0 5]), grid on

% the function g(x) = f’(x); to solve g(x) = 0:

g = @(x) x.^(-3) .* (x .* sec(x).^2 - 2 * tan(x))

% its derivative

dg = @(x) x.^(-4) .* (6 * tan(x) - 4 * x .* sec(x).^2 + ...

2 * x.^2 .* sec(x).^2 .* tan(x))

% starting point

x = 0.9

% do Newton iteration

for j=1:10

x = x - g(x) / dg(x)

end

% some numbers to check

f(x)

g(x)

The result is to show a useful picture of what we want to minimize, and to find x = 0.94774713351699.

Computer Problems 3.2, exercise 5. The usual, but start with plotting as suggested. I narrowed
it down to interval [0.12, 0.125] by plotting; note I enter f(x) habitually using Hörner’s method for
evaluating polynomials, which will be described in-class:

>> f = @(x) (((2 .* x + 24) .* x + 61) .* x- 16) .* x + 1; % using Horner’s
>> x=0.1:0.0001:0.13; plot(x,f(x)), grid on % not narrowed down yet, but
>> x=0.12:0.00001:0.125; plot(x,f(x)), grid on % now I can see the roots

Now do Newton using the plot to tell you starting points.
Check your answers using Matlab/Octave’s built-in fzero1, perhaps:

1By the way, fzero is a robust-ified combination of something like bisection plus secant method. More precisely,

it is “essentially ACM algorithm 748: Enclosing Zeros of Continuous Functions due to Alefeld, Potra and Shi, ACM

Transactions on Mathematical Software, Vol. 21, No. 3, September 1995.” I found this out by type fzero in Octave.

http://www.wolframalpha.com/

6

>> fzero(f,[0.121 0.122])
ans = 0.121320343559643
>> f(ans)
ans = 0
>> fzero(f,[0.123 0.124])
ans = 0.12310562561766
>> f(ans)
ans = 0

Problems 3.3, exercise 4.

x2 = x1 −
f(x1)(x1 − x0)
f(x1)− f(x0)

= 1− f(1)
f(1)− f(0)

= 1− −1
(−1)− (−2)

= 2,

which is not that impressive as a sequence of approximations to
√

2.

Computer Problems 3.3, exercise 1. The program:
secantELB.m

function z = secantELB(f,x0,x1)

% SECANTELB Secant method by Ed L. Bueler. Prints intermediate results.

% *Not* an efficient or robust implementation.

% Good example:

% >> f = @(x) x.^3 - 12 * x.^2 + 3 * x + 1

% >> x = -5:0.01:15; plot(x,f(x)), grid on, axis([-5 15 -20 20]) % locate roots

% >> x = 0:0.001:1; plot(x,f(x)), grid on % closer view

% >> secantELB(f,0.4,0.45)

% Bad example:

% >> g = @(x) sin(x/2) - 1

% >> secantELB(g,3,3.1)

while abs(x1-x0)/abs(x1) > 10*eps

xnew = x1 - feval(f,x1) * (x1 - x0) / (feval(f,x1) - feval(f,x0))

x0 = x1;

x1 = xnew;

end

z = xnew;

