Math 310 Numerical Analysis (Bueler)

October 18, 2009

Selected Solutions to Assignment #2

(version 2, with corrections and including 3.1 # 2)

Problems 1.1, exercise 2: The problem asks you to do two limits. To show that f is continuous at x = 0, compute f(0) = 0 (by definition) and note this is the same as

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin(1/x) = 0$$

(Justify by either the squeeze theorem or a picture, but give some indication of why.)

To show f'(0) does not exist, compute the derivative from the definition:

$$f'(0) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \lim_{h \to 0} \frac{h\sin(1/h) - 0}{h} = \lim_{h \to 0} \sin(1/h) \quad \text{d.n.e.}$$

(Why does the limit not exist? Again a picture suffices, in my opinion, or a proof can be done, looking at h for which 1/h is either a multiply of π or an odd multiple of $\pi/2$.)

Problems 1.1, exercise 6: By taking one sided limits we see $f(0) = \lim_{x\to 0} f(x)$, so f is continuous at x = 0. Because f is a polynomial near every other value of x, it is continuous everywhere. Again by taking one-sided limits we can show f'(0) does not exist, and that f'(x) has a jump at x = 0. Finally, because f' does not exist somewhere, we conclude f'' cannot exist there either.

Problems 1.1, exercise 11: Exactly this kind of problem is done in every calculus book to demonstrate the definition of "limit". Look there.

Problems 1.1, exercise 13: We are asked to find ξ so that

$$f(3) - f(1) = f'(\xi)(3 - 1)$$

where $f(x) = 3 - 2x + x^2$. This is equivalent to solving the equation

$$6 - 2 = (-2 + 2\xi)2$$

or $2 = -2 + 2\xi$ or $\xi = 2$. (Note f'(x) = -2 + 2x.)

Problems 1.1, exercise 15: The solution requires differentiating $f(x) = \cosh x$, finding the repeating pattern, plugging in c = 0 and finding the pattern in $f^{(k)}(0)$ and getting

$$\cosh x = \sum_{j=0}^{\infty} \frac{x^{2j}}{(2j)!}.$$

(This result can be checked by looking it up in any calculus book.)

Problems 1.1, exercise 23: Here we use n = 2 and c = 0 in Taylor's theorem with remainder to get the *equality*

$$\sin x = 0 + x + 0 + \frac{-\cos\xi}{6}x^3.$$

The error in the approximation $\sin x \approx x$ is the magnitude of the error term " $(-\cos(\xi)/6)x^{3}$ ". We can give an upper bound on this error term:

$$|\sin x - x| = \left|\frac{-\cos\xi}{6}x^3\right| \le \frac{1}{6}|x|^3$$

So we want to find x for which

$$\frac{1}{6}|x|^3 < 5 \times 10^{-7}.$$

(I am not too picky about meaning of "six decimal places," but I have used a good choice.) I get the interval $|x| \le 0.0144$ or $-0.0144 \le x \le 0.0144$. Thus we can trust "sin $x \approx x$ " to six digits as long as x is at most about 1/100 radians.

Problems 1.1, exercise 24: Very similar to the above.

Problems 1.1, exercise 26: Not graded.

Problems 1.2, exercise 2: Two things to see before actually calculating. First that, by definition, we are to show

$$\lim_{n \to \infty} \frac{x_{n+2} - x_{n+1}}{x_{n+1} - x_n} = 0.$$

Second, because the values x_n are outputs of F applied to the previous values, we see $x_{n+2}-x_{n+1} = F(x_{n+1})-F(x_n)$. But the MVT (p. 9) says $F(x_{n+1})-F(x_n) = F'(\xi)(x_{n+1}-x_n)$ for some ξ between x_{n+1} and x_n . Combining these, we need to show

$$\lim_{n \to \infty} \frac{F'(\xi)(x_{n+1} - x_n)}{x_{n+1} - x_n} = \lim_{n \to \infty} F'(\xi) = 0.$$

But the assumptions of the problem say F'(x) = 0 and we are told to assume F is continuously differentiable. But that says $\lim_{n\to\infty} F'(\xi) = 0$, as desired.

Problems 1.2, exercise 6: **a.** No. Informally this is because x_n has n^3 in it while $\alpha_n = n^2$. We want to show that there is no C so that $|x_n| \leq C |\alpha_n|$. To show this we can take a limit:

$$\lim_{n \to \infty} \frac{|x_n|}{|\alpha_n|} = \lim_{n \to \infty} \frac{5n^2 + 9n^3 + 1}{n^2} = \lim_{n \to \infty} 5 + 9n + n^{-2} = +\infty$$

This means the fraction we took the limit of can be arbitrarily large, so there is no C for which

$$\frac{|x_n|}{|\alpha_n|} \le C.$$

b. No. Similar.

c. No. Note

$$\lim_{n \to \infty} |x_n| / |\alpha_n| = \lim_{n \to \infty} \sqrt{n+3} = +\infty.$$

d. Yes. Since

$$\lim_{n \to \infty} \frac{|x_n|}{|\alpha_n|} = \lim_{n \to \infty} \frac{5n^2 + 9n^3 + 1}{n^3} = \lim_{n \to \infty} 5n^{-1} + 9 + n^{-3} = 9,$$

any C > 9 works in the inequality

$$|x_n| \le C |\alpha_n|.$$

e. No. Similar to c.

Problems 1.2, exercise 10: **a.** Again we take a limit, but first we have to use Taylor's theorem with $f(x) = e^x$, c = 0, and n = 1:

$$e^x = 1 + x + 0.5e^{\xi}x^2$$

where ξ is a number between 0 and x, so $\lim_{x\to 0} \xi = 0$. Then

$$\lim_{x \to 0} \frac{|e^x - 1|}{|x^2|} = \lim_{x \to 0} \frac{|x + 0.5e^{\xi}x^2|}{x^2} \le \lim_{x \to 0} \left(|x|^{-1} + 0.5e^{\xi} \right) = +\infty + 0.5 = +\infty.$$

So " $e^x - 1 = O(x^2)$ as $x \to 0$ " is not true because $|e^x - 1| \le C|x^2|$ implies

$$\frac{|e^x - 1|}{|x^2|} \le C.$$

b. To show that the "big-oh" is not true:

$$\lim_{x \to 0} \frac{|x^{-2}|}{|\cot x|} = \lim_{x \to 0} \frac{|\sin x|}{|x^{2} \cos x|} = \lim_{x \to 0} \frac{|\sin x|}{|x|} \frac{1}{|\cos x|} \frac{1}{|x|} = \lim_{x \to 0} 1 \cdot 1 \cdot \frac{1}{|x|} = +\infty.$$

(You need, and may have memorized, that the limit of $(\sin x)/x$ as $x \to 0$ is one.) Thus $x^{-2} = O(\cot x)$ as $x \to 0$ " is not true.

c. We again take a limit:

$$\lim_{x \to 0} \frac{|\cot x|}{|x^{-1}|} = \lim_{x \to 0} \frac{|x||\cos x|}{|\sin x|} = 1.$$

If " $\cot x = o(x^{-1})$ as $x \to 0$ " were true then this limit would be zero. (What we now know, however, is that

$$\cot x = O(x^{-1})$$

as $x \to 0$.)

Problems 3.1, exercise 2: a. Since $a_0 = 1.5$ and $b_0 = 3.5$, the initial interval has length $|b_0 - a_0| = 2$. The width at the *n*th step $|b_n - a_n| = 2^{-n}|b_0 - a_0| = 2^{-n+1}$. **b.** By theorem 1, $|c_n - r| \le 2^{-(n+1)}|b_0 - a_0| = 2^{-n-1} \cdot 2 = 2^{-n}$. This says exactly that the maximum distance between the root and the midpoint of the *n*th interval is 2^{-n} . **Problems 3.1, exercise 7**: The absolute error of the estimate from bisection, the *n*th midpoint c_n , is the distance $|c_n - r|$. Thus by theorem 1 on p. 79, the question is: for what *n* is

$$2^{-(n+1)}|3-2| < 10^{-6}$$
 ?

Trial and error, or using \log_2 , quickly gets n = 19 as the first such integer n. The relative error is the ratio $|c_n - r|/|r|$. Note we do not know r but we do know $2 \le r \le 3$. Thus

$$\frac{|c_n - r|}{|r|} \le \frac{|c_n - r|}{2} \le \frac{2^{-(n+1)}|3 - 2|}{2} = 0.5 \cdot 2^{-(n+1)} = 2^{-(n+2)}$$

It follows that n = 18 is the first n for which we know that bisection will get relative accuracy of 10^{-6} .

Problems 3.1, exercise 1: Not graded.

Computer Problems 3.1, exercise 1ac: Not graded.