
Math 310 Numerical Analysis (Bueler) October 18, 2009

Selected Solutions to Assignment #2
(version 2, with corrections and including 3.1 #2)

Problems 1.1, exercise 2: The problem asks you to do two limits. To show that f

is continuous at x = 0, compute f(0) = 0 (by definition) and note this is the same as

lim
x→0

f(x) = lim
x→0

x sin(1/x) = 0

(Justify by either the squeeze theorem or a picture, but give some indication of why.)

To show f ′(0) does not exist, compute the derivative from the definition:

f ′(0) = lim
h→0

f(0 + h)− f(0)

h
= lim

h→0

h sin(1/h)− 0

h
= lim

h→0
sin(1/h) d.n.e.

(Why does the limit not exist? Again a picture suffices, in my opinion, or a proof can be

done, looking at h for which 1/h is either a multiply of π or an odd multiple of π/2.)

Problems 1.1, exercise 6: By taking one sided limits we see f(0) = limx→0 f(x),

so f is continuous at x = 0. Because f is a polynomial near every other value of x, it

is continuous everywhere. Again by taking one-sided limits we can show f ′(0) does not

exist, and that f ′(x) has a jump at x = 0. Finally, because f ′ does not exist somewhere,

we conclude f ′′ cannot exist there either.

Problems 1.1, exercise 11: Exactly this kind of problem is done in every calculus

book to demonstrate the definition of “limit”. Look there.

Problems 1.1, exercise 13: We are asked to find ξ so that

f(3)− f(1) = f ′(ξ)(3− 1)

where f(x) = 3− 2x+ x2. This is equivalent to solving the equation

6− 2 = (−2 + 2ξ)2

or 2 = −2 + 2ξ or ξ = 2. (Note f ′(x) = −2 + 2x.)

Problems 1.1, exercise 15: The solution requires differentiating f(x) = coshx,

finding the repeating pattern, plugging in c = 0 and finding the pattern in f (k)(0) and

getting

coshx =
∞∑
j=0

x2j

(2j)!
.

(This result can be checked by looking it up in any calculus book.)
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Problems 1.1, exercise 23: Here we use n = 2 and c = 0 in Taylor’s theorem with

remainder to get the equality

sinx = 0 + x+ 0 +
− cos ξ

6
x3.

The error in the approximation sinx ≈ x is the magnitude of the error term “(− cos(ξ)/6)x3”.

We can give an upper bound on this error term:

| sinx− x| =
∣∣∣∣− cos ξ

6
x3

∣∣∣∣ ≤ 1

6
|x|3

So we want to find x for which
1

6
|x|3 < 5× 10−7.

(I am not too picky about meaning of “six decimal places,” but I have used a good choice.)

I get the interval |x| ≤ 0.0144 or −0.0144 ≤ x ≤ 0.0144. Thus we can trust “sinx ≈ x”

to six digits as long as x is at most about 1/100 radians.

Problems 1.1, exercise 24: Very similar to the above.

Problems 1.1, exercise 26: Not graded.

Problems 1.2, exercise 2: Two things to see before actually calculating. First that,

by definition, we are to show

lim
n→∞

xn+2 − xn+1

xn+1 − xn
= 0.

Second, because the values xn are outputs of F applied to the previous values, we see

xn+2−xn+1 = F (xn+1)−F (xn). But the MVT (p. 9) says F (xn+1)−F (xn) = F ′(ξ)(xn+1−
xn) for some ξ between xn+1 and xn. Combining these, we need to show

lim
n→∞

F ′(ξ)(xn+1 − xn)

xn+1 − xn
= lim

n→∞
F ′(ξ) = 0.

But the assumptions of the problem say F ′(x) = 0 and we are told to assume F is

continuously differentiable. But that says limn→∞ F
′(ξ) = 0, as desired.

Problems 1.2, exercise 6: a. No. Informally this is because xn has n3 in it while

αn = n2. We want to show that there is no C so that |xn| ≤ C|αn|. To show this we can

take a limit:

lim
n→∞

|xn|
|αn|

= lim
n→∞

5n2 + 9n3 + 1

n2
= lim

n→∞
5 + 9n+ n−2 = +∞

This means the fraction we took the limit of can be arbitrarily large, so there is no C for

which
|xn|
|αn|

≤ C.

b. No. Similar.
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c. No. Note

lim
n→∞

|xn|/|αn| = lim
n→∞

√
n+ 3 = +∞.

d. Yes. Since

lim
n→∞

|xn|
|αn|

= lim
n→∞

5n2 + 9n3 + 1

n3
= lim

n→∞
5n−1 + 9 + n−3 = 9,

any C > 9 works in the inequality

|xn| ≤ C|αn|.

e. No. Similar to c.

Problems 1.2, exercise 10: a. Again we take a limit, but first we have to use

Taylor’s theorem with f(x) = ex, c = 0, and n = 1:

ex = 1 + x+ 0.5eξx2

where ξ is a number between 0 and x, so limx→0 ξ = 0. Then

lim
x→0

|ex − 1|
|x2|

= lim
x→0

|x+ 0.5eξx2|
x2

≤ lim
x→0

(
|x|−1 + 0.5eξ

)
= +∞+ 0.5 = +∞.

So “ex − 1 = O(x2) as x→ 0” is not true because |ex − 1| ≤ C|x2| implies

|ex − 1|
|x2|

≤ C.

b. To show that the “big-oh” is not true:

lim
x→0

|x−2|
| cotx|

= lim
x→0

| sinx|
|x2 cosx|

= lim
x→0

| sinx|
|x|

1

| cosx|
1

|x|
= lim

x→0
1 · 1 · 1

|x|
= +∞.

(You need, and may have memorized, that the limit of (sinx)/x as x→ 0 is one.) Thus

“x−2 = O(cotx) as x→ 0” is not true.

c. We again take a limit:

lim
x→0

| cotx|
|x−1|

= lim
x→0

|x|| cosx|
| sinx|

= 1.

If “cotx = o(x−1) as x → 0” were true then this limit would be zero. (What we now

know, however, is that

cotx = O(x−1)

as x→ 0.)

Problems 3.1, exercise 2: a. Since a0 = 1.5 and b0 = 3.5, the initial interval has

length |b0 − a0| = 2. The width at the nth step |bn − an| = 2−n|b0 − a0| = 2−n+1.

b. By theorem 1, |cn − r| ≤ 2−(n+1)|b0 − a0| = 2−n−1 · 2 = 2−n. This says exactly that

the maximum distance between the root and the midpoint of the nth interval is 2−n.
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Problems 3.1, exercise 7: The absolute error of the estimate from bisection, the nth

midpoint cn, is the distanece |cn − r|. Thus by theorem 1 on p. 79, the question is: for

what n is

2−(n+1)|3− 2| < 10−6 ?

Trial and error, or using log2, quickly gets n = 19 as the first such integer n. The relative

error is the ratio |cn − r|/|r|. Note we do not know r but we do know 2 ≤ r ≤ 3. Thus

|cn − r|
|r|

≤ |cn − r|
2

≤ 2−(n+1)|3− 2|
2

= 0.5 · 2−(n+1) = 2−(n+2)

It follows that n = 18 is the first n for which we know that bisection will get relative

accuracy of 10−6.

Problems 3.1, exercise 1: Not graded.

Computer Problems 3.1, exercise 1ac: Not graded.


