
Math 310 Numerical Analysis (Bueler) Fall 02 (November 18, 2002)

Exam # 2 SOLUTIONS.

See histogram of exam scores at http://www.cs.uaf.edu/∼bueler/m310examhist.jpg

1 (a). We want to approximate the function f(x) = sin(.5x) by a second degree polynomial on the
interval [0, 3] using the values of f at x = 0, 2, 3 as interpolation points. Use Lagrange polynomials to find
the polynomial. [No need to simplify the polynomial.]

Solution. The polynomial is p(x) = sin(0)l0(x) + sin(1)l1(x) + sin(1.5)l2(x) = sin(1)l1(x) + sin(1.5)l2(x),
where

l1(x) =
x(x− 3)
−2

, l2(x) =
x(x− 2)

3
.

(b). Estimate the maximum error in the above interpolation job. Use the interpolation errors theorem.

Solution. Here n = 2 in the interpolation error theorem I—note IET II does not apply since the points
are not equally spaced :

f(x)− p(x) =
f ′′′(ξ)

3!
(x− 0)(x− 2)(x− 3).

And f ′′′(x) = −.125 sin(.5x) which has maximum absolute value .125. Thus

|f(x)− p(x)| ≤ .125
6
|(x− 0)(x− 2)(x− 3)| ≤ 1

6 · 8
(3 · 2 · 3) =

3
8

= .375.

[Less naive estimates of the maximum of (x− 0)(x− 2)(x− 3) are appropriate but not essential.]

2 (a). Use Simpson’s rule to find the approximate value of
∫ 2
−1 f(x) dx if

x −1 .5 2
f(x) 1 1.1 3

Solution.
∫ 2
−1 f(x) dx = 1.5

3 [1 + 4(1.1) + 3] = 4.2.

(b). In (a) we do not know anything about f(x) beyond its value at three points. What more information
about f would you want? Explain how you would use that information to get an estimate of the accuracy
of your result in (a).

Solution. One needs to know more values of f or a formula for f to compute better approximations. To
know the accuracy of those approximations, one needs to know the fourth derivative or an upper bound
M on the fourth derivative. If one knows M then an estimate of the error for the calculation in (a) is

|E| ≤ 1
90

M(1.5)5.

[Note: There was a misprint, which affected no ones’ result, in the Simpson’s rule with error formula
which was given on the exam. It should have said:

Basic Simpson’s Rule with error. If h = b−a
2 and c = a+b

2 then∫ b

a
f(x) dx =

h

3
[f(a) + 4f(c) + f(b)]− 1

90
h5f (4)(ξ).]

Extra Credit. Suppose we had the values of f at 33 equally spaced points, on the interval [−1, 2], in
(a). What algorithm would produce the best guess of the value of the integral? [Hint : 33 = 25 + 1.]

Solution. Romberg integration. Note that R(5, 0) would involve the calculation of trapezoid rule with
33 equally spaced points. Thus the first 6 rows of a Romberg table could be built, and R(5, 5) reported as
the best estimate. Of course, we would not know much about the reliability of this estimate.



3. Suppose f is increasing and that we want to find
∫ b
a f(x) dx. Let P be a partition of the interval [a, b]

into n equal length subintervals. Show that the difference between the upper sum U(f ;P ) and the lower
sum L(f ;P ) is

b− a

n
(f(b)− f(a)) .

Solution.

U(f ;P )− L(f ;P ) =
n−1∑
i=0

(Mi −mi)(xi+1 − xi) =
b− a

n

n−1∑
i=0

f(xi+1)− f(xi) =
b− a

n
[f(b)− f(a)],

where xi = a+ i b−a
n and, since f is increasing, Mi = f(xi+1), mi = f(xi). The sum “telescopes,” of course.

Extra Credit. Produce a convincing and somewhat polished “Proof Without Words or Formulas” of
3 above. [Hint : A picture with n = 5 and an “arbitrary” f(x) will be a good start.]

Solution.

4 (a). Suppose you want a polynomial p(x) of degree 6 which is as accurate as possible as an approxi-
mation of ex on the interval [−.5, .5]. In particular, you want the coefficients of the polynomial. Explain
how to do this in practice. You should explain with words and a pseudocode or Matlab. You may use
built–in Matlab commands.

Solution. The obvious way to get the polynomial is by interpolation. Because we get to choose the
interpolation points, we should use good points, that is, Chebyshev points. In detail this might mean

N=6;
xx=.5*cos((0:N)*pi/N);
p=polyfit(xx,exp(xx),N);

[I did not hold you responsible for the details of determining the Chebyshev points.]

(b). Suppose we want to compute ex accurately for any x ∈ R. One method is to write x = n + r where
n is an integer and −.5 ≤ r < .5. Then we can reduce the calculation to a combination of multiplication
and approximation of er:

ex = en+r = (e1)n er ≈ (e · e · · · e)p(r). (1)

Complete the following pseudocode by using (1) and including the polynomial p from (a): [Note: It is
not fair to use the exponential function in the above pseudocode.]



function z = myexp(x);
% MYEXP uses polynomial interpolation to compute the exponential

n=floor(x+.5);
r=x-n;
e=2.718281828459045;

% the following is completion:

% assume p contains the coefficients of the polynomial from (a)

z=1;
for i=1:abs(n)

z=z*e;
end
if n<0, z=1/z; end

z=z*polyval(p,r); % uses Horner’s evaluation of polynomial

[In fact, you should see myexp.m and also mycos.m on the course website. The strategy of this problem
is very effective.]

5. Derive the midpoint rule with error formula for the integral∫ 1

−1
f(x) dx.

[Hint : Use Taylor’s theorem. The error depends on the second derivative of f .]

Solution. Starting with Taylor’s theorem around c = 0: f(x) = f(0) + f ′(0)x + f ′′(ξ)
2 x2. Integrate to get∫ 1

−1
f(x) dx = 2f(0) + 0 +

1
2

∫ 1

−1
f ′′(ξ)x2 dx.

From the Mean Value Theorem for Integrals,∫ 1

−1
f ′′(ξ)x2 dx = f ′′(ξ̄)

∫ 1

−1
x2 dx = f ′′(ξ̄)

2
3

for some ξ̄ in [−1, 1]. Thus: ∫ 1

−1
f(x) dx = 2f(0) +

f ′′(ξ̄)
3

.

6. Determine n so that the composite trapezoid rule can be applied to the integral∫ 6

0
e−x2/2 dx

with maximum error 10−4.

Solution. Let h = 6/n. We want n so that

|E| = 6
12

h2|f ′′(ξ)| = 36
2n2

|f ′′(ξ)| < 10−4.

Note f ′′(x) = (x2 − 1)e−x2/2 so
|f ′′(ξ)| ≤ (36− 1) · 1 = 35.

[Actually |f ′′(ξ)| ≤ 1, but you really have to work to see this.]
We need

36 · 35
2n2

=
18 · 35

n2
< 10−4



or
n > 102

√
18
√

35 ≈ 2510.

7. Use Taylor’s theorem to derive the error term E in the famous finite difference approximation for the
second derivative:

f ′′(x) =
f(x + h)− 2f(x) + f(x− h)

h2
+ E.

Solution. Write out the Taylor’s theorem for f(x + h) and f(x − h). Noting that the odd terms will
cancel when we add, and that the second derivative is what we want, we use n = 3:

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2
h2 +

f ′′′(x)
3!

h3 +
f (4)(ξ1)

4!
h4,

f(x− h) = f(x)− f ′(x)h +
f ′′(x)

2
h2 − f ′′′(x)

3!
h3 +

f (4)(ξ2)
4!

h4.

Adding these, and moving the “2f(x)” term to the left,

f(x + h)− 2f(x) + f(x− h) = h2f ′′(x) +
h4

4!

[
f (4)(ξ1) + f (4)(ξ2)

]
.

Dividing by h2 and noting that we want an average of fourth derivatives:

f(x + h)− 2f(x) + f(x− h)
h2

= f ′′(x) +
h2

12

[
f (4)(ξ1) + f (4)(ξ2)

2

]
.

By the Intermediate Value Theorem, and assuming that the fourth derivative is continuous, and rearranging
into the desired form:

f ′′(x) =
f(x + h)− 2f(x) + f(x− h)

h2
− h2

12
f (4)(ξ).


