Math 310 Numerical Analysis (Bueler) November 24, 2002

Selected Assignment # 7 Solutions.
[I graded 5.3 #4, 5.3 #7, 5.3 CP #/, 5.4 #2, Problem A, 5.5 #2, 5.5 #6, 5.5 CP #1 and 5.2 CP #4.
FEach was worth 5 points for a total of 45.]

5.3 #4. Let h =b—a = 4. Then apply the trapezoid rule with extrapolation (that is, Romberg!) to
the integral f04 2% dx:

R(1,0) = %[20+2-22+24] = 25;
R(2,0):g[20+2~21+2-22+2-23+24]:22.5;

1 1
R(2,1) = R(2,0) + 3 [R(2,0) — R(1,0)] =22.5+ 5(22.5 — 25) = 21.6667.
Compare to the correct answer

4 2T 14
/ 2%dr = — | = 21.6404.
0 In2lo

5.3 #7. The method may work, but it will converge slowly to the correct answer. Note that, like
g(x) = /x, the integrand f(x) = /x cosz has no derivative (or higher derivatives) at « = 0, which is one
end of the interval. For Romberg to work we want derivatives of high order to be of reasonable size. In
particular see the Euler—-Maclaurin formula with error term.

5.3 CP #4. Your diagram (it can be by hand, of course!) should look like:

y:sqrt(l—xz)

point is

08r (Usqrt(2), 1/sqrt(2))

area here is /8
0.6

041

0.2

We now do the integral by using romberg, which was handed out on paper in class. First define £ in an
m—file:
function y=f(x);
y=sqrt(1-x.72)-x;

Now integrate



2

>> g=romberg(0,1/sqrt(2),1e-12)
q cnt error est

3.921430153752e-001 3  3.859e-002
3.926820549563e-001 5 5.390e-004
3.926987182501e-001 9 1.666e-005
3.926990777811e-001 17 3.595e-007
3.926990816805e-001 33  3.899e-009
3.926990816987e-001 65 1.816e-011
3.926990816987e-001 129  3.342e-014

Q

0.392699081698724
>> [8*q pi] )
ans =
3.14159265358979
3.14159265358979

Note that the function was only evaluate 129 times to determine 7 to 15 digits! Romberg rocks!

5.4 #2. [I only graded 2 a. and 2 b. because the 3/8 rule was not well documented in the book. The
composite Simpson’s rule with error term is found at the top of page 228.]

a. Here f(z) = sin(nz?/2) so f"(x) = mcos(nz?/2) — n?x?sin(mx?/2). The error term in the trapezoid
rule is

b—
By = —=-W*"(&).

We want to choose h so that the error term is at most 1073: |52 f”(£)] < 1073, But
IO <m-1+7%-1%-1=n(1+m).
[We have crucially used the fact that £ is in the interval £ € [0,1].] Thus

1 12
—h2n(1 <1073 h<4{/————— =0.0304.
R AT 100 = hs g = 0030
This corresponds to n > 33.

b. Here we use the error term for the composite Simpson’s rule on page 228:

b—a
T A @ ey,
—Ihtr(g)
Note f®(z) = 74zt sin(r2?/2) — 67322 cos(mx? /2) — 3n? sin(wz?/2) so |fH(€)] < n* + 67% + 372 ~ 313.1.
[I have replaced all the x’s with 1 and the sin/cos’s with 1, and all the minus’ with plus’ because I can’t
count on cancellation. The interval z € [0, 1] matters!]

Thus we want h small enough so that

Eg =

h4
Es| —h“‘ (¢ ‘<7313.1<10*3
|Bsl = 750" |1 180 =

4 180

which is equivalent to h < {/357 755 ~ 0.1548. This corresponds to n > 7 so Simpson’s is quite an

improvement on the trapezoid rule for this problem.

Problem A. [As with 2, I only graded the trapezoid and Simpson’s rule and not the Simpson’s 3/8 part.]
a. Here our upper bound on f”(¢) is different because £ is in the interval [0, 4]:

177(€)] < 7+ 242 ~ 161.1.



Thus

b- Tr2e) < h—2161 1<107? <= h< \/L ~ .00432
12 -3 = = V161.1-103 -

which corresponds to n about n > 927. Note this is a lot more than four times the n in 2 a. The plot
below makes it very clear why: the derivatives are all increasing rapidly as we move to the right on the
graph of f.
b. Here |fW(€)] < 4*7* + 6 - 4273 + 372 ~ 27943 for € € [0,4] so
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4
Egl < —h*27943<107% <= h<{/——  ~0.0356.
1Bs| < 15 = 10 =V 10327943

Notice that this h is much smaller (almost five times) than the h in 2 b. The reason is purely that
the interval has expanded to include places where the fourth derivative of f is much larger. This example
shows why we want to adapt.

Here is the figure requested in the statement of the problem:

y=sin(rtx?/2) [for 5.4 #2 and Problem A]
T T

o 0.5 1 15 2 25 3

5.4 CP #5. [NOT GRADED!] For the input
>> f=inline(’cos(2*x)./exp(x)’,’x’)
£ =
Inline function:
f(x) = cos(2*x)./exp(x)
>> quad(f,0,2*pi,le-3,1)
ans =
0.199626136373597
I get the picture:
Note that the figure shows the points at which quad evaluated the function. Note the adaptivity. Note
the use of a low tolerance of 1073, which can obviously be improved at the cost of more evaluations.
[Unfortunately I think this picture must be produced in a slightly different manner in version 6 of Matlab
(in the Chapman 103 lab) works. One ought to be able to produce a comparable picture with quad8.)

5.5 #2. [I graded only parts a and b.] Here is a problem which rewards Matlab usage:
a.
>> x=[-sqrt(1/3) sqrt(1/3)]1’; A=[1 1];
>> Ax[1 1]°
ans =
2
>> Axx



*MY* copy of Matlab shows:
T T

0.2 B E

ans =

0
>> Ax(x.72)
ans =

0.666666666666667

>> Ax(x.73)
ans =

0
>> Ax(x.74)
ans =

0.222222222222222
The above computations correspond to:

1 1 1 1 1
/ ldx =2; / rdx = 0; / 2 dr = 2/3; / 23 dz = 0; / ztdr =2/5.
-1 -1 —1 -1 —1

I have included the last equation because it shows that the n = 1 Gauss rule is only correct up to degree
2n + 1 = 3 and is not correct for degree 4.
b.

>> x=[-sqrt ((1/7)*(3+4*sqrt(.3))) -sqrt((1/7)*(3-4*sqrt(.3)))...
sqrt ((1/7)*(3-4*sqrt(.3))) sqrt((1/7)*(3+4x*sqrt(.3)))]’
X =
-0.861136311594053
-0.339981043584856
0.339981043584856
0.861136311594053
>> A=[.5-sqrt(10/3)/12 .5+sqrt(10/3)/12 .5+sqrt(10/3)/12 .5-sqrt(10/3)/12]
A=
Columns 1 through 3
0.347854845137454 0.652145154862546 0.652145154862546
Column 4
0.347854845137454
>> [A*x[1 1 1 117 A*x(x.71) Ax(x.72) A*(x.73) Ax(x.74) A*(x.75) Ax(x.76) A*x(x."7)]
ans =
Columns 1 through 3



2 -5.55111512312578e-017 0.666666666666667
Columns 4 through 6

0 0.4 0
Columns 7 through 8
0.285714285714286 0
>> [2 02/3 0 2/50 2/7 0]
ans =
Columns 1 through 3
2 0 0.666666666666667
Columns 4 through 6
0 0.4 0
Columns 7 through 8
0.285714285714286 0

c. Similar.
5.5 #6. We only get up to z', unfortunately:

b
b—a —-j/ lde=A-1+B-0;

b2_ 2 b
2“ :/:cdx:A-a—{—B-l.
These two already determine A and B:
A=b—a;
B:b2fa2_aA:b2—a2—2ab+2a2:(b—a)Q‘
2 2 2

In conclusion the rule is only accurate for degree one polynomials.

5.5 CP #1. Based on the n =2 part of the table on page 235, and on formula (6) on the top of page
233, I wrote the following program:

function g=mygauss2(f,a,b);

% MYGAUSS2 integrates f by the n=2 Gauss rule

h

% £ might be ">> f=inline(’exp(-cos(x)."2)’,’x’) "
% then ">> mygauss2(f,0,2) "

t=[-sqrt(3/5) 0 sqrt(3/5)]1’;

A=[5 8 5]/9;

c=(b-a)/2; d=(b+a)/2;

g=c*Axfeval (f,c*t+d) ;

5.5 CP #2. On the integral fOQ €°* gz it produces:
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>> f=inline(’exp(-cos(x)."2)’,’x’)
£ =

Inline function:

f(x) = exp(-cos(x)."2)
>> mygauss2(f,0,2)

ans =
1.41194709649912
versus:
>> quad8(f,0,2)
ans =

1.41830206582229
>> quad(f,0,2,1e-8)
ans =

1.41830206579667

On the integral fol dx/+/x it produces 1.7508... versus the correct answer of 2. The error is not too

surprising because the unbounded function z~1/2 is poorly approximated by a polynomial.



