
Math 310 Numerical Analysis (Bueler) November 24, 2002

Selected Assignment # 7 Solutions.
[I graded 5.3 #4, 5.3 #7, 5.3 CP #4, 5.4 #2, Problem A, 5.5 #2, 5.5 #6, 5.5 CP #1 and 5.2 CP #4.

Each was worth 5 points for a total of 45.]

5.3 #4. Let h = b − a = 4. Then apply the trapezoid rule with extrapolation (that is, Romberg!) to
the integral

∫ 4
0 2x dx:

R(1, 0) =
h
4
[20 + 2 · 22 + 24] = 25;

R(2, 0) =
h
8
[20 + 2 · 21 + 2 · 22 + 2 · 23 + 24] = 22.5;

R(2, 1) = R(2, 0) +
1
3

[R(2, 0)−R(1, 0)] = 22.5 +
1
3
(22.5− 25) = 21.6667.

Compare to the correct answer
∫ 4

0
2x dx =

2x

ln 2

]4

0
= 21.6404.

5.3 #7. The method may work, but it will converge slowly to the correct answer. Note that, like
g(x) =

√
x, the integrand f(x) =

√
x cosx has no derivative (or higher derivatives) at x = 0, which is one

end of the interval. For Romberg to work we want derivatives of high order to be of reasonable size. In
particular see the Euler–Maclaurin formula with error term.

5.3 CP #4. Your diagram (it can be by hand, of course!) should look like:
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y=sqrt(1−x2) 

y=x 

area here is π/8 

point is
(1/sqrt(2),1/sqrt(2)) 

We now do the integral by using romberg, which was handed out on paper in class. First define f in an
m–file:

function y=f(x);
y=sqrt(1-x.^2)-x;

Now integrate
1



2

>> q=romberg(0,1/sqrt(2),1e-12)
q cnt error est

3.921430153752e-001 3 3.859e-002
3.926820549563e-001 5 5.390e-004
3.926987182501e-001 9 1.666e-005
3.926990777811e-001 17 3.595e-007
3.926990816805e-001 33 3.899e-009
3.926990816987e-001 65 1.816e-011
3.926990816987e-001 129 3.342e-014

q =
0.392699081698724

>> [8*q pi]’
ans =

3.14159265358979
3.14159265358979

Note that the function was only evaluate 129 times to determine π to 15 digits! Romberg rocks!

5.4 #2. [I only graded 2 a. and 2 b. because the 3/8 rule was not well documented in the book. The
composite Simpson’s rule with error term is found at the top of page 228.]
a. Here f(x) = sin(πx2/2) so f ′′(x) = π cos(πx2/2) − π2x2 sin(πx2/2). The error term in the trapezoid
rule is

ET = −b− a
12

h2f ′′(ξ).

We want to choose h so that the error term is at most 10−3:
∣

∣
1
12h2f ′′(ξ)

∣

∣ ≤ 10−3. But

|f ′′(ξ)| ≤ π · 1 + π2 · 12 · 1 = π(1 + π).

[We have crucially used the fact that ξ is in the interval ξ ∈ [0, 1].] Thus

1
12

h2π(1 + π) ≤ 10−3 ⇐⇒ h ≤
√

12
13.01 · 103 = 0.0304.

This corresponds to n ≥ 33.
b. Here we use the error term for the composite Simpson’s rule on page 228:

ES = −b− a
180

h4f (4)(ξ).

Note f (4)(x) = π4x4 sin(πx2/2)− 6π3x2 cos(πx2/2)− 3π2 sin(πx2/2) so |f (4)(ξ)| ≤ π4 + 6π3 + 3π2 ≈ 313.1.
[I have replaced all the x’s with 1 and the sin/cos’s with 1, and all the minus’ with plus’ because I can’t
count on cancellation. The interval x ∈ [0, 1] matters! ]

Thus we want h small enough so that

|ES | =
1

180
h4

∣

∣

∣f (4)(ξ)
∣

∣

∣ ≤
h4

180
313.1 ≤ 10−3

which is equivalent to h ≤ 4
√

180
313.1·103 ≈ 0.1548. This corresponds to n ≥ 7 so Simpson’s is quite an

improvement on the trapezoid rule for this problem.

Problem A. [As with 2, I only graded the trapezoid and Simpson’s rule and not the Simpson’s 3/8 part.]
a. Here our upper bound on f ′′(ξ) is different because ξ is in the interval [0, 4]:

|f ′′(ξ)| ≤ π + π242 ≈ 161.1.
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Thus
b− a
12

h2|f ′′(ξ)| ≤ h2

3
161.1 ≤ 10−3 ⇐⇒ h ≤

√

3
161.1 · 103 ≈ .00432

which corresponds to n about n ≥ 927. Note this is a lot more than four times the n in 2 a. The plot
below makes it very clear why: the derivatives are all increasing rapidly as we move to the right on the
graph of f .
b. Here |f (4)(ξ)| ≤ 44π4 + 6 · 42π3 + 3π2 ≈ 27943 for ξ ∈ [0, 4] so

|ES | ≤
4

180
h427943 ≤ 10−3 ⇐⇒ h ≤ 4

√

45
103 · 27943

≈ 0.0356.

Notice that this h is much smaller (almost five times) than the h in 2 b. The reason is purely that
the interval has expanded to include places where the fourth derivative of f is much larger. This example
shows why we want to adapt.

Here is the figure requested in the statement of the problem:
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y=sin(π x2/2)   [for 5.4 #2 and Problem A]

x

y

5.4 CP #5. [NOT GRADED! ] For the input
>> f=inline(’cos(2*x)./exp(x)’,’x’)
f =

Inline function:
f(x) = cos(2*x)./exp(x)

>> quad(f,0,2*pi,1e-3,1)
ans =

0.199626136373597

I get the picture:
Note that the figure shows the points at which quad evaluated the function. Note the adaptivity. Note

the use of a low tolerance of 10−3, which can obviously be improved at the cost of more evaluations.
[Unfortunately I think this picture must be produced in a slightly different manner in version 6 of Matlab

(in the Chapman 103 lab) works. One ought to be able to produce a comparable picture with quad8.]

5.5 #2. [I graded only parts a and b.] Here is a problem which rewards Matlab usage:
a.
>> x=[-sqrt(1/3) sqrt(1/3)]’; A=[1 1];
>> A*[1 1]’
ans =

2
>> A*x
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*MY* copy of Matlab shows:

ans =
0

>> A*(x.^2)
ans =

0.666666666666667
>> A*(x.^3)
ans =

0
>> A*(x.^4)
ans =

0.222222222222222

The above computations correspond to:
∫ 1

−1
1 dx = 2;

∫ 1

−1
x dx = 0;

∫ 1

−1
x2 dx = 2/3;

∫ 1

−1
x3 dx = 0;

∫ 1

−1
x4 dx = 2/5.

I have included the last equation because it shows that the n = 1 Gauss rule is only correct up to degree
2n + 1 = 3 and is not correct for degree 4.
b.
>> x=[-sqrt((1/7)*(3+4*sqrt(.3))) -sqrt((1/7)*(3-4*sqrt(.3)))...
sqrt((1/7)*(3-4*sqrt(.3))) sqrt((1/7)*(3+4*sqrt(.3)))]’
x =

-0.861136311594053
-0.339981043584856
0.339981043584856
0.861136311594053

>> A=[.5-sqrt(10/3)/12 .5+sqrt(10/3)/12 .5+sqrt(10/3)/12 .5-sqrt(10/3)/12]
A =

Columns 1 through 3
0.347854845137454 0.652145154862546 0.652145154862546

Column 4
0.347854845137454

>> [A*[1 1 1 1]’ A*(x.^1) A*(x.^2) A*(x.^3) A*(x.^4) A*(x.^5) A*(x.^6) A*(x.^7)]
ans =

Columns 1 through 3
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2 -5.55111512312578e-017 0.666666666666667
Columns 4 through 6

0 0.4 0
Columns 7 through 8

0.285714285714286 0
>> [2 0 2/3 0 2/5 0 2/7 0]
ans =

Columns 1 through 3
2 0 0.666666666666667

Columns 4 through 6
0 0.4 0

Columns 7 through 8
0.285714285714286 0

c. Similar.

5.5 #6. We only get up to x1, unfortunately:

b− a =
∫ b

a
1 dx = A · 1 + B · 0;

b2 − a2

2
=

∫ b

a
x dx = A · a + B · 1.

These two already determine A and B:

A = b− a;

B =
b2 − a2

2
− aA =

b2 − a2 − 2ab + 2a2

2
=

(b− a)2

2
.

In conclusion the rule is only accurate for degree one polynomials.

5.5 CP #1. Based on the n = 2 part of the table on page 235, and on formula (6) on the top of page
233, I wrote the following program:

function q=mygauss2(f,a,b);
% MYGAUSS2 integrates f by the n=2 Gauss rule
%
% f might be ">> f=inline(’exp(-cos(x).^2)’,’x’) "
% then ">> mygauss2(f,0,2) "

t=[-sqrt(3/5) 0 sqrt(3/5)]’;

A=[5 8 5]/9;

c=(b-a)/2; d=(b+a)/2;

q=c*A*feval(f,c*t+d);

5.5 CP #2. On the integral
∫ 2
0 ecos2 x dx it produces:
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>> f=inline(’exp(-cos(x).^2)’,’x’)
f =

Inline function:
f(x) = exp(-cos(x).^2)

>> mygauss2(f,0,2)
ans =

1.41194709649912

versus:
>> quad8(f,0,2)
ans =

1.41830206582229
>> quad(f,0,2,1e-8)
ans =

1.41830206579667

On the integral
∫ 1
0 dx/

√
x it produces 1.7508 . . . versus the correct answer of 2. The error is not too

surprising because the unbounded function x−1/2 is poorly approximated by a polynomial.


