
Math 310 Numerical Analysis (Bueler) October 7, 2002

Selected Assignment # 3 Solutions.

1.2 #29. [This is not something you do in real life, but might help your understanding of the error
formula! ] With the given values,

E5 = En+1 =
fn+1(ξ)
(n + 1)!

(x− c)n+1 =
cos(ξ)

5!

(π

4

)5
.

Now, f(x) = [series k = 0 to k = n = 4] + En+1, so
1√
2

= sin
π

4
=

π

4
−

(π

4

)3
/6 + E5

since we know the first four terms of the Taylor series: sinx ≈ x− x3/3!. These facts allow us to solve for
cos(ξ):

cos(ξ) =
5! 45

π5

(
1√
2
− π

4
+

(π

4

)3
/6

)
≈ 0.985438.

Since ξ should be in the interval [0, x] = [0, π/4], this means ξ ≈ arccos(0.985438) = 0.170864.

2.1 #2. a. (27.1)10 = (33.06314)8
b. (12.34)10 = (14.25605075 . . . )8
c. (3.14)10 = (3.10753412 . . . )8

2.1 #10. The conversion procedure referred to in the text is, of course, just the procedure that groups
in fours and gives hex digits:

N = (111100101001111110)2 = (11 1100 1010 0111 1110)2 = (3CA7E)16.

How to justify? Start by writing out the meaning of binary digits:

N = (dndn−1 . . . d2d1d0)2 = dn2n + dn−12n−1 + . . . d222 + d121 + d020

where di ∈ {0, 1}. If needed, pads by zero until there are a multiple of four digits: n+1 = 4k or n = 4k−1.
Then you group into fours:

N = (d4k−124k−1 + · · ·+ d4k−424k−4) + · · ·+ (d323 + d222 + d121 + d020).

Then recognize that
0 ≤ a23 + b22 + c21 + d20 < 16

if each of a, b, c, d is a binary digit. Thus we can replace each group of four with a hexidecimal digit.

2.1 CP #3. Here’s my code. I played around refining it more than you need to. Note that strings are
arrays (row vectors):

function [ostr,bstr]=convOctBin(n);
% CONVOCTBIN [ostr,bstr]=convOctBin(n)
% Converts integers to octal and binary strings.
% The binary string is grouped in threes.
% For example, " [oct bin]=convOctBin(100) " gives
% oct = 144 and bin = 1 100 100
% while " [oct bin]=convOctBin(-57382) " gives
% oct = - 160046 and bin = - 1 110 000 000 100 110.
%(Ed Bueler, 10/5/02)

octdig=’01234567’; binoct=’000001010011100101110111’;
if n<0, sstr=’- ’; else, sstr=’’; end
n=abs(n); k=floor(log(n)/log(8)); pow=round(8^k);
ostr=’’; bstr=’’;

1



2

for j=k:-1:0
dig=floor(n/pow); n=rem(n,pow); pow=round(pow/8);
ostr=[ostr octdig(dig+1)];
bstr=[bstr binoct(3*dig+1:3*dig+3) ’ ’];

end
for i=1:2 % strip zeros

if bstr(1)==’0’, bstr=bstr(2:length(bstr)); end
end
ostr=[sstr ostr]; bstr=[sstr bstr]; % attach sign

For example,
>>[oct bin]=convOctBin(100)
oct =
144
bin =
1 100 100

And: (10)10 = (12)8 = (1010)2,
(−57382)10 = (−160046)8 = (−1 110 000 000 100 110)2,
(138251)10 = (416013)8 = (100 001 110 000 001 011)2.

2.2 #2. a. The format is s
∣∣c∣∣f . For 0.5 = 2−1, c− 127 = −1, that is c = 126 = (1111 1110)2.

Then 0.5 = 0
∣∣0111 1110

∣∣0000 0000 0000 0000 0000 000 .

And −0.5 = 1
∣∣0111 1110

∣∣0000 0000 0000 0000 0000 000 .

b. Then 0.125 = 0
∣∣0111 1100

∣∣0000 0000 0000 0000 0000 000 .

And −0.125 = 1
∣∣0111 1100

∣∣0000 0000 0000 0000 0000 000 .

c. Then 0.0625 = 0
∣∣0111 1011

∣∣0000 0000 0000 0000 0000 000 .

And −0.0625 = 1
∣∣0111 1011

∣∣0000 0000 0000 0000 0000 000 .
SORRY to assign such boring examples.

2.2 #36. I think this is a common phenomenon. For instance, I ran

count=0;
for j=1:100000

a=rand(1); b=rand(1); c=rand(1);
if ((a+b)+c)-(a+(b+c))~=0, count=count+1; end

end
count

which compares (a+b)+c to a+(b+c) for a hundred thousand examples where a, b, c are random (uniform
on [0, 1]). The count is 25537, that is,

(a + b) + c 6= a + (b + c)

about one quarter of the time in this context.

2.2 CP #7. [This is an interesting problem but one which is more important to explore than to get
the right answer. I have graded it with this in mind.]

The first question (“. . . what is the largest value of s . . . ?”) requires recognizing that in the given
pseudocode, s will only change if 1.0/x is big enough to make a difference. That is, the largest the sum



3

could be is the first value of s for which

s = s +
1
x

exactly, in machine floating point

This will happen when 1
x < εs. Now s ≈ γ + lnx for large x—that’s the point of Euler’s constant, really.

So I would like to solve the inequality
1
x

< ε(γ + lnx) or x(γ + lnx) >
1
ε
,

for x, but I don’t know how to do that exactly.
[Exactness isn’t needed, really. I could do trial and error on powers of two, for instance, or I can proceed

as follows:]
Of course, s is bigger than one. Thus if 1

x < ε then the sum will not increase. Thus in the case of single
precision (MARC--32 or IEEE single), the sum s will not increase once

1
x

< ε = 2−23

which is to say x > 223. Thus the sum will certainly stop increasing after 223 ≈ 8 × 106 steps in single
precision. (One can actually test this in C or FORTRAN, but not in Matlab which is always in double
precision.)

In double precision the sum will definitely not increase once x > 1
ε = 252 ≈ 5 × 1015, and that is a lot

of steps.
I wrote the following program to compute estimates of γ—note x is just the index j:

% badEuler Approximates Euler’s constant in a dubious manner.

format long, format compact % cleans up appearance
n=5000
s=1.0;
for j=2:n

s=s+1/j;
if rem(j,100)==0, disp(s-log(j)), end

end

% to compare last estimate to sum in reverse order:
% s=1/n; for j=n-1:-1:1, s=s+1/j; end, s-log(n)

It produced 50 numbers which slowly converged to γ, but the last had only 3 digits correct:
>> badEuler
n = 5000
0.58220733165153
0.57971358157341

...
0.57731982795127
0.57731770224705
0.57731566156817

By the way, in double precision, even with n = 5, 000, 000, there was only a difference in the last two
places if I reversed the order of the sum.



4

You may find the following useful: I have used the following commands in the solutions I have
written already. I thought it might be a useful list. Note that “help disp” etc. will show how to use
disp:

Special character commands:
;
:
.ˆ
.*
=
==
˜=

General Matlab commands:
clear
disp
error
inline
length
size

Math commands:
abs
fix
floor
log
min
rand
rem
round

Plotting commands:
grid (on/off)
hold (on/off)
legend
plot
semilogy
title

Major algorithms:
polyfit
polyval
\


