
Math 310 Numerical Analysis (Bueler) September 29, 2002

Selected Assignment # 2 Solutions.

3.3 CP #16. Here’s my version. There is more than needed because I also looked at how the error
decreased at each step:

% False Position (ELB 9/27/02)

%f=inline(’x.^3-5*x+3’,’x’);a=0;b=1; % for #5
f=inline(’x-cos(x)’,’x’); a=0; b=1; % to solve x=cos(x)
N=20;
clear err; fa=f(a); fb=f(b);
if fa*fb>0, error(’f(a), f(b) not opposite in sign’), end
for j=1:N

[a b fa fb] % show bracket and values at each stage
err(j)=min(abs([fa fb]));
c=(b*fa-a*fb)/(fa-fb);
fc=f(c);
if fc*fa>0, a=c; fa=fc; else, b=c; fb=fc; end

end;
[a b fa fb]
% plot error logarithmically
j=1:N;
semilogy(j,err,’o’)
title(’Value of min(|f(a)|,|f(b)|) in False Position.’)

I ran the program on #5 (that is, on x3 − 5x + 3 = 0) using [−3, 3] as the initial bracket. I got
[a, b] = [−3.000000,−2.490863] after 20 steps, with f(b) ≈ 5× 10−11 which means b = −2.490863 is close
to a root. Of course it is not the largest positive root because it isn’t positive.

Then I used [1, 3] as the starting bracket and got [1.83410, 3.00000] with f(a) ≈ −7 × 10−4 after 20
steps. With [0, 1] as the starting bracket, I got [0, .65662] with f(b) ≈ −6× 10−15 after 20 steps.

I think I have found all the roots, and 1.83410 is the approximate location of the largest. I compare to:
>>roots([1 0 -5 3])
ans =
-2.49086361536104
1.83424318431392
0.65662043104711

Finally, starting with [0, 1] I found [.7390851332151606, .7390851332151607] as a bracket for the solution
to x = cos(x) after 20 steps. So it seemed to work great on this example, but closer inspection showed
that the interval shrank only “accidently” when one of the endpoints of the interval was essentially correct
already.

The problem with the method is that the interval isn’t actually shrinking, even though one end is close
to a root. Drawing pictures suggests why, and the next problem (#17, not assigned!) suggests how it
might be solved. Don’t give up bisection, Newton, and secant for this method!

1.1 #2. We have ∣∣∣∣0.6032− x

x

∣∣∣∣ =
1

1000
,

or |0.6032− x| = x
1000 since clearly x is positive. Either

0.6032− x =
x

1000
so x =

1000
1001

0.6032 =
6032
10010

1

2

or
x− 0.6032 =

x

1000
so x =

1000
999

0.6032 =
6032
9990

.

1.1 #8ab. a. p(x) = x32 = x(2·2·2·2·2) = (((((x2)2)2)2)2, which requires only 5 multiplications.
b. Compute x − 1 first, which requires one subtraction. Let q(x) = ((x − 1)2)2 (two multiplications).

Then
p(x) = (x− 1)q(x) (3 + 7q(x)) ,

which requires 3 more multiplications and one addition for a total of 5 multiplications and 2 addi-
tions/subtractions.

1.1 #9. Here is running Matlab, which may always be substituted for a pseudocode:

% EXPPOLY for sect 1.1 #9

x=-1.3456 %sample value
v=exp(x);
y=11 + v*(9 + v*(7 + v*5))

It requires one evaluation of the exponential, 3 multiplications and 3 additions.

1.1 #10. First make sure you know what you are calculating, by writing it out:

z =
a1

b1
+

a1a2

b2
+ · · ·+ a1a2 . . . an

bn
.

Here’s code that runs:

% SUMPROD10 for sect 1.1 #10
n=5 % sample values for n,a,b
a=[2 3 4 1 2]
b=[1 2 3 3 2]
% result should be: z=2+3+8+8+24=45 (by hand, to check)
p(1)=a(1);
for j=2:n, p(j)=p(j-1)*a(j); end
z=p(1)/b(1);
for j=2:n, z=z+p(j)/b(j); end
z % display

It does n− 1 multiplications and n divisions, but is wasteful by storing a new array p. Can you do better?
In fact, the program uses subscripted variables when it does not need to.

1.1 #13. I wrote out what z was after each of the first few iterations of the for loop. I saw the
(temporary) values for z:

z = bn + 1, bnbn−1 + bn−1 + 1, bnbn−1bn−2 + bn−1bn−2 + bn−2 + 1, . . .

This is a sum of products, and eventually gives z = 1 + b2 + b2b3 + · · ·+ b2b3 . . . bn or

z = 1 +
n∑

j=2

j∏
k=2

bk.

1.1 CP #4. I entered at the command line:
>>n=8.^(1:20)
>>y=(1+1./n).^n

(Do you see how it works, and how it takes advantage of the use of the colon notation and the vectorized
nature of Matlab?) It produced:

y =
Columns 1 through 3

3

2.56578451395035 2.6973449525651 2.71563200016899
Columns 4 through 6
2.71795008118967 2.71824035193029 2.71827664376605

...
Columns 16 through 18
2.71828182845904 2.71828182845904 1
Columns 19 through 20
1 1

Compare to exp(1.0)=2.71828182845905. Thus the n = 817 result, and previous, is great, but the
n = 818, 819, 820 estimates are very poor! Why?

Note
1

818
≈ 5.55× 10−17

while eps = 2.2204e-016 is Matlab’s EPSILON. This explain the problem. In fact, the machine thinks
1 + 1

818 = 1 and raises it to a large power to get 1 as an estimate for e.
This problem shows you what is meant by the definition of EPSILON(X) in section 2.2.

1.1 CP #7. I offer the following two programs. The first uses traditional (nonMatlab) programming
style:

% MEANVARSTD for sect 1.1 CP #7

a=[1 2 3 4]; n=4; % some test data for which I can check the results by hand
%a=100*rand(1,20); n=20; % some more test data

m=a(1); for k=2:n, m=m+a(k); end
m=m/n
v=(a(1)-m)^2; for k=2:n, v=v+(a(k)-m)^2; end
v=v/(n-1)
sigma=sqrt(v)

The second uses Matlab relatively well, and is a function:

function [m, v, sigma]=mvs(a);
% MVS Function for sect 1.1 #7.

n=size(a,2);
m=sum(a)/n;
v=sum((a-m).^2)/(n-1);
sigma=sqrt(v);

You run this second program at the command line by
>>[m v sig]=mvs([1 2 3 4])
Now, you can test the above with builtin Matlab functions which do the same thing:
>>a=[1 2 3 4], mean(a), var(a), std(a)

1.2 #5. I find the series by noting coshx is the even part of the exponential function:

coshx =
ex + e−x

2
= 1 +

x2

2!
+

x4

4!
+

x6

6!
+ . . .

Thus

cosh(0.7) ≈ 1 +
(0.7)2

2
+

(0.7)4

24
+

(0.7)6

720
= 1.25516757.

Compare cosh(0.7) = 1.25516901 from Matlab, so the above has absolute error of 1.4×10−6, and a relative
error of about the same (since cosh(0.7) is actually pretty close to one).

4

1.2 #8. I used Taylor’s theorem as stated on page 27. We want e1 so x = 1, and we are using the series
on page 22 for ex, so c = 1. To answer the question, all we care about is to determine n so that the error
term En+1 is less than 5 × 10−16. (This gives correct rounding to 15 digits past the decimal point in all
cases.) Now, f (n+1)(ξ) = eξ. Thus

En+1 =
eξ

(n + 1)!
1n+1 =

eξ

(n + 1)!
.

This needs to be less than 5 × 10−16 in absolute value, as stated. The largest ξ could be, given x and c
here, is ξ = 1. Note we know e < 3. (Exercise: Prove this without summing infinite series or knowing e
exactly.) Thus we need n so that

|En+1| =
∣∣∣∣ eξ

(n + 1)!

∣∣∣∣ ≤ 3
(n + 1)!

< 5× 10−16.

I don’t care to invert a factorial, so I do trial and error to get n large enough:
>>n=1:20; 3./cumprod(n+1)

...
Columns 16 through 18
8.43437176303656e-015 4.68576209057587e-016 2.4661905739873e-017

...
This tells me that if n = 17 then the error is at most 4.69× 10−16, which is small enough. Thus n = 17,

or eighteen terms (why?) is enough.

1.2 #28. This involves the n = 3 case of Taylor’s theorem for cos x, because the question is how accurate
is 1 + 0− x2

2 + 0 as an approximation to cos x. But E4 = En+1 = cos ξ
4! x4 since the fourth derivative of cos

is cos. And
|E4| ≤

1
24
|x|4 ≤ 1

384
≈ 0.0026

for |x| < 1
2 .

1.2 CP #12. The program I get is

% PISINEST for sect 1.2 CP #12

st=1 % sin(theta_2)=1
p=2*st % p_2=2 sin(theta_2)
for j=3:20

temp=sqrt(1-st^2);
st=st/(sqrt(2*(1+temp)))
p=(2^(j-1)) * st

end

which gives p20 = 3.14159265357099. That compares with 4.0*atan(1.0) = pi = 3.14159265358979,
with absolute error about 2× 10−11.

How to get there? By looking at each sector I note

Asector = 2 · (1/2) sin(θn/2) cos(θn/2) = (1/2) sin θn.

Next I note sin(2θn) = sin(θn−1) (why?). But sin(2θn) = 2 sin(θn) cos(θn), so I want to solve

2 sin θn

√
1− sin2 θn = sin θn−1

for sin θn. That is, solve 2x
√

1− x2 = y for x. This is quadratic in x2, actually, and we want the positive
x satisfying x2 = (1/2)

(
1−

√
1− y2

)
because the other is close to one. Rationalizing the numerator and

using x = sin θn, etc. gives

sin θn =
sin θn−1√

2[1 +
√

1− sin2 θn−1]
.

