Selected Solutions to Assignment #6

These problems were graded at 3 points each for a total of 21 points.
(The Group Project on A#6 is treated as a separate 10 point assignment.)

4.4 #10. The auxiliary equation \(r^2 + 2r - 1 = 0 \) has roots \(r = (-2 \pm \sqrt{4 + 4})/2 = -1 \pm \sqrt{2} \). On the other hand, the right hand side (nonhomogeneity) is \(10 = 10 t^0 e^{0t} \), so \(s = 0 \) in form (14) because \(r = 0 \) is not a root of the auxiliary equation. (Note you can just check it is not: \(0^2 + 2(0) - 1 \neq 0 \).) Thus we use

\[
y_p(t) = t^0 (A_0) e^{0t} = A_0.
\]

Substituting into the differential equation gives

\[
(A_0)'' + 2(A_0)' - A_0 = 10
\]

which is

\[-A_0 = 10. \]

Thus \(y_p(t) = -10 \).

4.4 #12. The equation is first order but the same undermined coefficients approach works. (You can also find a particular solution by treating this equation as first order linear and using the techniques of section 2.3.) The auxiliary equation is \(2r + 1 = 0 \). The right hand side is of the form \(3t^2 = C t^m e^{rt} \) with \(m = 2 \) and \(r = 0 \). Since \(r = 0 \) is not a root (solution) of \(2r + 1 = 0 \) we have \(s = 0 \). So we try

\[
x_p(t) = t^0 (A_2 t^2 + A_1 t + A_0) e^{0t} = A_2 t^2 + A_1 t + A_0.
\]

Substituting this into \(2x' + x = 3t^2 \) gives

\[
2(2A_2 t + A_1) + (A_2 t^2 + A_1 t + A_0) = 3t^2.
\]

Matching coefficients of powers gives these three equations:

\[
A_2 = 3,
\]

\[
4A_2 + A_1 = 0,
\]

\[
2A_1 + A_0 = 0.
\]

These are easy to solve, in the given order for instance, to give \(A_0 = 24 \), \(A_1 = -12 \), \(A_2 = 3 \). In fact it is easy to check that \(x_p(t) = 3t^2 - 12t + 24 \) is a solution of \(2x' + x = 3t^2 \).

4.4 #16. The right side has form \(C t^m e^{at} \sin(\beta t) = t \sin t \) so \(m = 0 \), \(a = 0 \), \(\beta = 1 \). The issue is whether \(r = \alpha \pm i \beta = \pm i \) are roots of the auxiliary equation, which is \(r^2 - 1 = 0 \). But \(r = \pm i \) does not solve \(r^2 - 1 = 0 \). So \(s = 0 \) and we try this form

\[
\theta_p(t) = t^0 (A_1 t + A_0) e^{0t} \cos(1t) + t^0 (B_1 t + B_0) e^{0t} \sin(1t) = (A_1 t + A_0) \cos t + (B_1 t + B_0) \sin t.
\]

Substitution into \(\theta'' - \theta = t \sin t \), and simplification, gives

\[
(-2A_1 t - 2A_0 + 2B_1) \cos t + (-2B_1 t - 2A_1 - 2B_0) \sin t = t \sin t.
\]

The coefficients must match:

\[
-2A_1 = 0,
\]

\[
-2A_0 + 2B_1 = 0,
\]

\[
-2B_1 = 1,
\]

\[
-2A_1 - 2B_0 = 0.
\]

As a (checkable!) result,

\[
\theta_p(t) = -\frac{1}{2} \cos t - \frac{1}{2} t \sin t.
\]
4.4 #22. The right side has form $24t^2e^t = C t^m e^{-rt}$ so $m = 2$ and $r = 1$. The auxiliary equation is $r^2 - 2r + 1 = 0$ and $r = 1$ (appearing on the right side) is a root. Indeed $r^2 - 2r + 1 = (r-1)^2$ so $r = 1$ is a repeated root, and thus $s = 2$. So we try this form

$$x_p(t) = t^2(A_2 t^2 + A_1 t + A_0)e^t.$$

Substitution of this form into $x'' - 2x' + x = 24t^2e^t$, and a substantial amount of work (!), gives these three easy equations for A_2, A_1, A_0, by matching coefficients of like powers; note that the highest powers of t have coefficient zero: $2A_0 = 0, 6A_1 = 0, 12A_2 = 24$. Thus

$$x_p(t) = t^2(2t^2 + 0t + 0)e^t = 2t^4 e^t.$$

This is checkable, worth checking, and checks out!

4.4 #28. (Note only the form of $y_p(t)$ is asked for.) The right side (nonhomogeneity) has form $t^4 e^t$ for $m = 4$ and $r = 1$. The auxiliary equation is $r^2 + 3r - 7 = 0$. Note $1^2 + 3(1) - 7 \neq 0$ so $s = 0$. Thus we should try this form:

$$y_p(t) = (A_4 t^4 + A_3 t^3 + A_2 t^2 + A_1 t + A_0) e^t.$$

4.7 #10. Substituting t^r gives characteristic equation

$$r(r - 1) + 2r - 6 = r^2 - r - 6 = 0.$$

That is, $(r-3)(r+2) = 0$, so the general solution is

$$y(t) = c_1 t^3 + c_2 t^{-2}.$$

At least that was easy . . .

4.7 #46. Here $y_1(t) = t^{-2}$ is given. The other thing we need for reduction of order is $p(t)$. But the equation must be in standard form to know $p(t)$:

$$y'' + \frac{6}{t} y' + \frac{6}{t^2} y = 0.$$

Thus $p(t) = 6/t$. Reduction of order is, therefore, this nested pair of integrals:

$$y_2(t) = y_1 \int \frac{e^{-\int \frac{p}{y_1} dt}}{y_1^2} dt = t^{-2} \int \frac{e^{-\int \frac{6}{t} dt}}{t^{-4}} dt = t^{-2} \int t^4 e^{-6 \ln t} dt$$

$$= t^{-2} \int t^4 t^{-6} dt = t^{-2} \int t^{-2} dt = -t^{-3}.$$

I have done these integrals quickly, ignoring constants, because we are only looking for one new solution y_2. The general solution $c_1 y_1 + c_2 y_2$ will have unknown constants anyway.

In this case we can check the answer two ways. First we may substitute $y_2 = -t^{-3}$ directly to see it is a solution. Second we can notice the ODE is actually a Cauchy-Euler equation.