Math 201 Calculus II (Bueler) December 7, 2003

Solutions to MIDTERM EXAM # 2
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Solution. 1 use L’Hopital’s rule twice, even though in the second limit it is really unnecessary as you
should recognize the limit:

1. Use L’Hopital’s rule to evaluate the limit lim,_,q
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2. Apply the integral test or the direct comparison test to determine if the series converges or
diverges: 300, nn
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Solution. (By Integral Test). Using the substitution v = Inx,
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that is, the integral diverges. Thus the series diverges.
Solution. (By Direct Comparison). Note Inn > 1 for n > 3 so
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for n > 3. Furthermore, the harmonic series (p-series with p=1) >">° 4 % diverges. Thus the series
in question is bigger than a divergent series, and thus diverges.

3. (a) Explain why fol e fg is improper.
Solution. The integral is improper because the integrand —22

1=z is unbounded on the interval (0, 1),

and in fact lim,_,;- % = +o00.
(b) Evaluate the improper integral.
Solution. With the substitution u = 1 — 22,
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The last step uses the fact that if b — 1~ then 1 — b? — 0. Thus the integral diverges (to +oc0).

4. Find the limit of the sequence a,, = n tan (%)
Solution. By L’Hopital at the second equality,
1 tan (1 sec? (L) =L 1
lim ntan () = lim J = lim M = lim sec? (> =1.
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The last step uses the idea that if z — 0 then sec z — 1 because secz = 1/ cos z.

5. (a) Does the sequence a,, = % converge? If so, find its limit.

Solution. Yes, it converges to zero because (—1/3)" — 0 as n — oo.
(b) Does the series Y 7, CUY converge? If so, find its sum.

IGD)
Solution. Yes, it converges. In fact it is geometric with r = =!, so that |r| < 1. Also a = —1/12—
substitute n = 1 in X" Thus
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6. Does the series > >0, ——— converge or diverge? Explain. Include name(s) of test(s) used.

nvn2—1
Solution. It converges by comparison to » #, which is the series one gets if one ignores the “—1".
In fact, by the Limit Comparison Test,
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which is neither 0 nor oo, so the two series do the same thing. But > # is a convergent p-series
with p = 2.
Solution. It converges by integral test because
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is finite (i.e. converges).

7. Does the series > 7, ﬁ converge or diverge? If it converges, find its sum.

NOTE. 1 asked for the sum! Thus the series must be either geometric or telescoping and it’s not
geometric.

Solution. The series is telescoping. By partial fractions,
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The Nth partial sum is
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converges. (The series converges because the limit of the partial sums exists, not because of some

test; you may apply a comparison test to show convergence but that doesn’t get the sum.)

8. Does the series Y % converge or diverge? Explain. Include name(s) of test(s) used.

Solution. The series converges by the Ratio test:
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and |R| < 1.
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Extra Credit. Does the series ) 7, % converge or diverge? Carefully explain.

Solution. The series converges by Limit Comparison to the series » % In fact,
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The last step is the result of problem 4. As the limit just computed is neither zero nor infinity, the
two series do the same thing. On the other hand, > # is a convergent p-series.



