
Math 201 Calculus II (Bueler) December 1, 2003

Solutions to Bonus Quiz

1. First, the absolute series
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But the alternating series
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n3+2 converges by the Alternating Series test because un
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positive, decreasing, and has limit zero: limn→∞ n2

n3+2 = 0. Thus the alternating series converges
conditionally.
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n! converges absolutely because we can apply the Ratio Test successfully to the
absolute series
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= 0.

Here R = 0 so |R| < 1.


