Midterm Exam # 1 Solutions

1. *Something like*: “The values of \(f(x) \) can be made to be as close as one wishes to \(L \) by choosing \(x \) sufficiently close to, but not equal to, \(a \).”

2. (a)
\[
(f \circ g)(x) = \sin \left(\frac{1}{1+x} \right),
\]
\[
(f \circ f)(x) = \sin(\sin x),
\]
\[
(g \circ f)(x) = \frac{1}{1 + \sin x}.
\]

(b)
- \(\text{domain } f \circ g = \{ x \neq 1 \} \),
- \(\text{domain } f \circ f = \{ \text{all real numbers} \} \),
- \(\text{domain } g \circ f = \{ \sin x \neq 1 \} = \{ x \text{ is not one of } \ldots, -\frac{5\pi}{2}, -\frac{\pi}{2}, \frac{3\pi}{2}, \frac{7\pi}{2}, \ldots \} \).

3. (a) \(f'(x) = -2x + 6x^5 - 18x^{17} \).

(b)
\[
g'(x) = \frac{2x(x-1) - x^2(1)}{(x-1)^2} = \frac{x^2 - 2x}{(x-1)^2}.
\]

4. The original limit gives the indeterminant form “\(\infty - \infty \)”. Thus we complete the difference of squares:
\[
\lim_{x \to \infty} \sqrt{x^2 + 1} - x = \lim_{x \to \infty} \frac{(\sqrt{x^2 + 1} - x)(\sqrt{x^2 + 1} + x)}{(\sqrt{x^2 + 1} + x)} = \lim_{x \to \infty} \frac{(x^2 + 1) - x^2}{(\sqrt{x^2 + 1} + x)}
\]
\[
= \lim_{x \to \infty} \frac{1}{\sqrt{x^2 + 1} + x} = 0.
\]

5. [Sketch will be given in class.]

6.
\[
\lim_{h \to 0} \frac{(1 + h)^4 - 1}{h} = \lim_{h \to 0} \frac{1 + 4h + 6h^2 + 4h^3 + h^4 - 1}{h} = \lim_{h \to 0} \frac{h(4 + 6h + 4h^2 + h^3)}{h}
\]
\[
= \lim_{h \to 0} (4 + 6h + 4h^2 + h^3) = 4 + 0 + 0 + 0 = 4.
\]

7. [Sketch will be given in class.]

8. [Sketch will be given in class.]
9. First,
\[\frac{dy}{dx} = 3 + (-1)x^{-2} = 3 - \frac{1}{x^2}. \]
[Note that you may use the power rule to calculate the derivative. The definition of the derivative also works, of course, but if I want you to use it I will definitely say “Use the definition of the derivative to . . . ”] Thus
\[m = \left. \frac{dy}{dx} \right|_{x=1} = 3 - 1 = 2 \]
so the tangent line is
\[y - 4 = 2(x - 1) \quad \text{or} \quad y = 2x + 2 \]
because we know a point \((x_0, y_0) = (1, 4)\).

Extra Credit. The point here is that as one approaches the origin from either left or right on the graph \(y = x^{2/3}\), the slope goes to infinity. [It is not enough to note that the slope is undefined at \(x = 0\), because there are plenty of graphs like \(y = |x|\) where the slope is undefined at \(x = 0\) but no one would say “the tangent line is vertical.”] The calculations which support my claim that the slope goes to infinity are:
\[m_{\text{tangent, right}} = \lim_{h \to 0^+} \frac{h^{2/3} - 0}{h} = \lim_{h \to 0^+} h^{-1/3} = +\infty, \]
\[m_{\text{tangent, left}} = \lim_{h \to 0^-} \frac{h^{2/3} - 0}{h} = \lim_{h \to 0^-} h^{-1/3} = -\infty, \]
so
\[|m_{\text{tangent, right}}| = |m_{\text{tangent, left}}| = +\infty \]
so the tangent line at the origin is vertical (even though the derivative at \(x = 0\) does not exist).