MATH 200 (Bueler) Fall 2008
Midterm Exam # 1: SOLUTIONS

1. (a)

(b) Formula: (go f)(xz) = g(f(z)) = /2% — 1. Domain: {2* — 1 > 0}, which is {z > 0} =
[0, 00).

2. F'(r)=3r2+¢"
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6. The denominator of this fraction is 22 — x = x(x — 1), so it has zeros at x = 0 and

at x = 1. These numbers are not zeros of the numerator. Therefore x = 0, x = 1 are both
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vertical lines which are vertical asymptotes of the graph. For the horizontal asymptote we
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Thus there is no horizontal asymptote.
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(And note that (dy/dt)|i=1 = 6.28.)

8.  The statement means that the values of f(z) can be made as close as desired to L by
choosing z sufficiently close to, but not equal to, a.

9. (a) f(x) = cosbz is continuous at x = 0 because x = 0 is in the domain of f and
lim,_,q cos bx exists and
lim cos bz =1 = cos(5 - 0)
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because the function in parentheses is continuous.

10. Input x = 10/7 produces output y = 7/10 = 0.7 and input x = 10/3 produces output
y = 3/10 = 0.3. The distance from 10/7 to 2 is 2 — (10/7) = 4/7 while the distance from

10/3 to 2is (10/3) —2 =4/3. And
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a fact suggested by the picture as well. Therefore you can choose § = 4/7; you don’t need to
know that 4/7 = 0.57142857 . ... In other words, the picture shows
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if |z —2| < = then ‘—0.5’ <0.2.
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Extra credit. The polynomial p(z) = z* + 2 — 3 is continuous on the whole real line so
we can use the intermediate value theorem (IVT) on any interval. I plugged in some values,
starting with = 0. Note p(0) = —3 is negative, but the function goes to +00 as z — +oc.
Also I notice that p(—2) = 49 and p(2) = +15. Therefore, using the IVT on the interval
[—2,0] with L = 0 we conclude there is a solution between —2 and 0. By the same argument
there is another solution on the interval [0, 2].



