
Bounding Iterated Function Systems via Convex Optimization

Orion Sky Lawlor

Department of Computer Science
University of Illinois at Urbana-Champaign

Abstract
We present an algorithm to construct a bounding poly-

hedron for an affine Iterated Function System (IFS). Our
algorithm expresses the IFS-bounding problem as a set
of linear constraints on a linear objective function, which
can then be solved via standard techniques for linear con-
vex optimization. As such, our algorithm is guaranteed to
find the optimum recursively instantiable bounding vol-
ume, if it exists.

Key words: Iterated Function Systems, Bounding, Convex
Optimization, Linear Programming

1 Introduction

Iterated Function Systems (IFSs) are a widely-used rep-
resentation for fractal shapes. Much prior work has
gone into constructing bounding volumes for IFSs using
spheres, including the seminal work by Hart and DeFanti
[3], who needed bounding volumes in order to raytrace
IFSs.

The definitive work on sphere bounding volumes is
that of Rice [5], who finds the smallest bounding sphere
by searching over sphere centers using a generic nonlin-
ear optimization package. Our work, though superfically
dissimilar, was inspired by this approach, and follows
much of his development.

1.1 Iterated Function Systems
An Iterated Function System (IFS) consists of a finite
set of functionswm, which map a space to itself. The
Hutchinson operatorH is defined as the union of each of
the mapswm. That is, given a subset of spaceB,

H(B) =
⋃
m∈M

wm(B)

Under certain conditions on thewm,1 it can be shown
that repeated applications ofH always converge to a
unique attractorA. That is, starting with any bounded
nonempty setB,H∞(B) = A. This attractor is the heart
of the IFS, and can be suprisingly structured and beauti-
ful, as shown in Figure 1.

We can now establish our fundamental theorem, the
recursive bounding theorem, which states that if a shape

1A sufficient condition is that eachwm be Lipschitz contractive.

Figure 1. The attractor of a 3-map iterated function system.

bounds its image under the operatorH, then the shape
bounds the attractor.

Theorem 1.1. Given a convergent IFS, if B bounds its
image under H , B bounds the attractor. That is, if a sub-
set of space B satisfies

∀m∈M wm(B) ⊂ B

then H∞(B) ⊂ B.

Proof: Our proof proceeds by induction on applications
of H.

The base case is trivial because by definitionH(B) =⋃
m∈M wm(B), and by hypothesis eachwm(B) ⊂ B,

so becauseH(B) is the union of shapes bounded byB,
H(B) ⊂ B.

For the inductive step, assume for somek, Hk(B) ⊂
B. But then if we defineC = Hk(B) ⊂ B, we find that
becauseC ⊂ B, eachwm(C) ⊂ wm(B), so

H(C) =
⋃
m∈M

wi(C) ⊂
⋃
m∈M

wi(B) = H(B) ⊂ B

ThusH(C) = Hk+1(B) ⊂ B.
By induction, thenH∞(B) ⊂ B. �

Figure 2. We ensure containment by checking each corner of
the hull under each map.

2 Approach

Our basic approach will be to bound the IFS attractor us-
ing a bounding hull built from the intersection of a set
of halfspaces. Using the recursive bounding theorem,
we will guarantee that the attractor lies within the hull
by guaranteeing “containment”—that is, by ensuring that
under each mapwm, the map of the hull lies within the
original hull.

In general, the map of a polyhedral hull is no longer
polyhedral; so checking containment can be quite diffi-
cult. Luckily, we are normally interested in affine maps
in ordinary Euclidian space, so the map of a convex poly-
hedral hull is still a convex polyhedron. As such, we can
guarantee containment by requiring that each corner of
the polyhedron (that is, each intersection of the polyhe-
dron’s sides), under each map, satisfies all the halfspaces
of the hull, as shown in Figure 2.

2.1 Method
Our bounding hull is a convex polyhedron, and hence
consists of a setS of halfspaces. Our halfspaces con-
sist of an outward-facing normal~ns, represented as a row
vector, and a scalar displacementds. Then we can de-
termine if a point~x, represented as a column vector, lies
inside the halfspace by examining the dot product

~ns ~x ≤ ds

In 2D, two halfspacesi andj intersect at a point~xij
if the point simultaniously satisfies the equations of both
halfplanes, that is, if[

~ni
~nj

]
~xij =

[
di
dj

]
To guarantee containment, and hence apply the recur-

sive bounding theorem, we have to make sure each map
of each intersection satisfies each of the halfspaces. That

is, given a set of intersectionsI, mapsM , and halfspaces
S, we require

∀(i,j)∈I, m∈M, s∈S ~ns wm(~xij) ≤ ds (1)

2.2 Linearity of Constraints
We now need to show how the constraints in equation 1
can be made suitable for use in a linear optimizer. We
first note that if we fix the normals and define the matrix

Nij =
[
~ni
~ni

]−1

then~xij is a linear function ofdi anddj

~xij = Nij

[
di
dj

]
In 3D, we can similarly define a matrixNijk to compute
the intersection of three halfplanes given their displace-
mentsdijk.

Since we assumed the mapswm were affine, we can
represent each mapwm as a matrixWm and a shift vector
~sm, as in

wm(~x) = Wm ~x+ ~sm

We can now expand out equation 1 and verify that our
constraints are now linear in the displacements

∀(i,j)∈I, m∈M, s∈S ~ns (WmNij

[
di
dj

]
+~sm) ≤ ds (2)

This final, linear form of our constraints is suitable for
direct use in a constrained linear optimization package;
where the displacementsdi are our unknowns and every-
thing else is fixed.

A linear optimization system will also require an ob-
jective function. We normally want the “smallest” bound-
ing hull, and the exact choice of the objective function is
determined by exactly what we mean by “smallest”. Area
is a natural choice, but unfortunately the area of the hull
is a nonlinear function of the displacements, so we cannot
directly minimize area. Another natural choice is to min-
imize the largest displacement, which is easy to achieve
by the standard technique of adding an additional variable
to represent the maximum displacement. Our choice for
an objective function is to minimize the sum of the dis-
placements, which is quite simple and should give results
similar to minimizing either area or maximum displace-
ment.

Finally, we can keep the displacements non-negative
by expressing the mapswm in a coordinate system where
the displacment origin always lies within the hull. For
example, we can place the origin at one of the maps’
fixed points, since each of the maps’ fixed points must
lie within the attractor.

2.3 Extension to RIFS
In a Recurrent Iterated Function System (RIFS), we do
not apply the individual maps randomly. Instead, after
applying mapi, we are only allowed to apply mapj if
there is an edge in the “control graph”G between the
nodes representing mapsi andj. A theorem by Barnsley
[1] shows the attractor for a RIFS can be described as a
set of overlapping “attractorlets.”

A coarse bound for an RIFS can be found by simply ig-
noring the control graphG, in effect converting the RIFS
into an ordinary IFS. As usual, this requires|M ||I||S|
constraints.

A tighter bound can be obtained by independently
bounding each of the attractorlets with a separate convex
bounding hull. The constraints for such a system would
look identical to the constraints seen previously, but since
each attractorlet must be bounded separately, this will re-
quire|M ||S| unknowns and|M |2|I||S| constraints.

3 Limitations

Our bounding hull approach has several limitations.

3.1 Corners
Because our bounding hull has corners, it may not be
possible to bound an IFS by simply increasing the hull’s
size. For example, consider a single-map 2D IFS that
consists of a 30-degree rotation together with a very gen-
tle contraction. The attractor for this IFS consists of a
single point. However, no 4-sided hull can recursively
bound this IFS, because the hull’s corners will always
stick out—see Figure 3. Increasing the sides of the box
does not help, because rotation and scaling are scale-
independent.2

The solution to this corner problem is to add sides—in
this case, a 12-sided hull will match itself under rotation,
and can then be shrunk exactly to the attractor.

In 2D, if the angle between two hull corners isα, the
corners will never stick out if all the map contraction fac-
tors sm satisfy sm < cosα/2, as can be seen in Fig-
ure 4. This means if the largest contraction factor of
any map iss, no corner will protrude if we use at least
h = 2π/α > π

cos−1 s sides.
For contraction factors very close to 1, this means we

may require an unaffordably large number of sides to
acheive any bound; but as we will show, in practice most
IFS only require a very small number of sides.

3.2 Fixed normals
To implement the algorithm as a linear optimization prob-
lem, we first choose fixed normal directions for the faces
of our convex hull. A natural choice, which we have

2We did not consider translation here, because by choosing a big
enough bounding volume we can make any finite translation seem
small.

(a) (b)

Figure 3. For a one-map IFS, which rotates and slightly scales
space, the sphere bound (a) fits nicely; but the corners of a 4-
sided box (b) will never fit inside the box.

α

s rm

r

Figure 4. Corners never stick out if sm < cosα/2.

A

D C

B A

D C

BA

D C

B

[h]

Figure 5. In 3D, vertices that are the intersection of 4 faces, as
shown in the center, can be shifted to have two different sets of
intersections, as shown on the left and right.

made, is to pick equally spaced directions.

However, it is often possible to find a smaller hull
via a better choice of normal directions; although op-
timizing over normals is a nonlinear optimization prob-
lem. Choosing normal directions is the subject of ongo-
ing work.

3.3 Fixed intersections

We must also pick the vertices on the convex hull where
faces intersect. In 2D, this is simple–every two adjacent
convex hull edges intersect at a hull vertex, and any other
edge intersections will lie outside the hull and can be
safely ignored. The only way the set of intersections can
change is if three edges intersect at a point, in which one
of the edges vanishes; in this case we end up checking the
same point twice, but this causes no problems.

But in 3D, the set of points on the hull boundary can
change. For example, if four facesA, B, C, andD in-
tersect at a point, perturbing the faces one way leaves
the intersectionsABC andADC on the hull; while an-
other perturbation leavesABD andBCD on the hull, as
shown in Figure 5. Since we have to choose the set of in-
tersections beforehand, we cannot allow more than three
faces to intersect at a point.

4 Implementation

We implemented this convex optimization bounding
method for 2D IFS. We wrote a C++ program to gen-
erate constraints for the widely available convex linear
optimization package lpsolve [2]. In this section, we ex-
amine the results and performance of this implementation
of the method.

4.1 Example

Figure 6 shows the coarse bounding volume computed by
our implementation using just 8 sides; Figure 7 shows the
much tighter bounding volume computed using 30 sides.

In both cases, the bounding volume indeed appears to
be optimal, in that any smaller volume with the same
number and orientation of sides would not recursively
bound the attractor. Both figures also lie quite close to
the actual attractor.

Figure 6. An IFS and attractor, with an 8-sided bounding volume
computed by the algorithm.

4.2 Performance
Given an IFS withM maps, and a bounding volume con-
sisting ofI intersections betweenH halfspaces, we will
need exactlyMIH constraints, of the form given in equa-
tion 2, andH unknowns. In 2D, the number of inter-
sections is equal to the number of halfspaces, so this is
O(MH2) constraints.

Although there polynomial-worst-case algorithms for
solving linear programs exist, such as Karmarkar’s [4];
the package we used,lp solve , is based on the well
known exponential-worst-case simplex method. The re-
lationship between the number of sides and the run time is
shown in Figure 8; the algorithm’s total run time appears
to be approximatelyO(H4.6). Large numbers of sides
are thus computationally infeasible; but a couple dozen
sides can be computed quickly. Luckily, as shown below,
more sides than this are rarely required.

The experimental relationship between the number of
sides and the area of the resulting hull is summarized in
Figure 9. Because we distribute the side normals evenly,
the area plot jumps up and down as useful normals are
found and then passed by. As can be seen in the plot, in
practice a fairly small number of sides suffices to bound
most IFSs.

5 Conclusions

We have presented an algorithm based on convex linear
optimization for constructing an optimal convex bound-
ing volume for the attractor of an Iterated Function Sys-
tem or Recurrent Iterated Function System.

The algorithm is easy to implement and runs at inter-
active rates for small problems.

Figure 7. The same IFS using a 30-sided bounding volume.

0.001

0.01

0.1

1

10

100

1000

1 10 100

T
im

e
(s

)

Sides

sponge
3dragon
4dragon
5dragon
6dragon
bifurcate

curlyq
fern

holly
pine

serpinsky
spiral

vankoch

Figure 8. Log-log plot of the time to determine the optimal bound
for a variety of sides for a variety of IFS. Runs on a 1.3 GHz AMD
Athlon PC running Linux.

6 Future Directions

We have only implemented this bounding technique in
2D. The 3D version should be virtually identical, and
would allow us to experiment with raytracing IFS attrac-
tors using our computed convex bounding volumes.

Choosing the side normals is a difficult problem, and
should be done automatically somehow. Many ap-
proaches for this ”normal search” seem promising: we
might begin with a small number of sides, then add sides
where they seem necessary; or begin with a large num-
ber of sides and prune those that are not useful. It may
even be possible to make good a priori normal estimates
by examining some feature of the individual IFS maps.

There are a variety of possibilities to improve the speed
of the algorithm. It may be possible to take advantage

0

0.5

1

1.5

2

2.5

1 10 100

A
re

a
of

 H
ul

l

Sides

sponge
3dragon
4dragon
5dragon
6dragon
bifurcate

curlyq
fern

holly
pine

serpinsky
spiral

vankoch

Figure 9. Log-linear plot of the area of the bound found by the
algorithm for a variety of sides and a variety of IFS.

of the spatial structure of this problem’s constraints to
speed up the optimization process; or use another solver
for convex linear optimization.

References

[1] M. F. Barnsley, J. H. Elton, and D. P. Hardin. Recur-
rent iterated function systems.Constructive Approx-
imation, 5:3–31, 1989.

[2] Michel Berkelaar. Mixed integer linear
program solver lpsolve. Available from
ftp://ftp.ics.ele.tue.nl/pub/lp solve/ .

[3] J.C. Hart and T. A. DeFanti. Efficient anti-aliased
rendering of 3d linear fractals. InSIGGRAPH ’91
Proceedings, pages 91–100, July 1991.

[4] N. Karmarkar. A new polynomial-time algorithm
for linear programming.Combinatorica, 4:373–396,
1984.

[5] Jonathan Rice. Spatial bounding of self-affine iter-
ated function system attractor sets. InGraphics In-
terface, pages 107–115, May 1996.

	Introduction
	Iterated Function Systems

	Approach
	Method
	Linearity of Constraints
	Extension to RIFS

	Limitations
	Corners
	Fixed normals
	Fixed intersections

	Implementation
	Example
	Performance

	Conclusions
	Future Directions

