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Abstract

Nonlinear functions, including nonlinear iterated function systems, have interesting fixed points. We present a
non-Lipschitz theoretical approach to nonlinear function system fixed points which generalizes to non-contractive
functions, compare several methods for evaluating such fixed points on modern graphics hardware, and present a
nonlinear generalization of Barnsley’s Deterministic Iteration Algorithm. Unlike the many existing randomized
rendering algorithms, this deterministic method avoids noncoherent branching and memory access, and takes ad-
vantage of programmable texture mapping hardware. Together with the performance potential of modern graphics
hardware, this allows us to animate high quality and high definition fixed points in real time.
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1. Introduction

Iterated Function Systems are a method to gener-
ate easily controlled, infinitely detailed fractal images
such as Figure 1 from the repeated application of sim-
ple mathematical functions.

1.1. Mathematical Background

This paper shows how to compute fixed points of
image-to-image functions. We define an image I :
X → C as a function mapping some domain X (for
example, 2D space) into some range C (a color space).
Then an image-to-image transform F : I → I has a
fixed point image a ∈ I when F(a) = a: that is, the
fixed point image remains unchanged under the image
transform.

It is reasonable to ask if such a fixed point always
exists, and the answer is no. For example, in a binary
color space C = {0, 1} the color inversion transform
F(I(~p )) = 1 − I(~p ) does not have a fixed point. Yet
a number of theorems establish sufficient conditions
for the existence of such a fixed point. The majority
of iterated function system work uses the well known
Banach fixed point theorem, which gives both the ex-
istence and uniqueness of the fixed point, and merely
requires X and C to be complete, but requires the im-
age transform F to be Lipschitz contractive. This the-
orem has been used for much iterated function system
work [1], but it does require contractivity. Since many
interesting nonlinear functions are not contractive ev-
erywhere, including the functions shown in Figure 1,
we will not use the Banach theorem.
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Figure 1. A simple two-map nonlinear iterated function system,
as rendered on the GPU at 30fps using these techniques.

Instead, the Schauder-Tychonoff [2] fixed point the-
orem, an extension of the Brouwer fixed point theo-
rem to infinite dimensional spaces, establishes suffi-
cient conditions for the existence of a fixed point.

Schauder-Tychonoff Fixed Point Theorem 1. Let K
be a non-empty, compact, convex subset of a locally
convex topological vector space. Given any continuous
mapping F : K → K, there exists a fixed point a ∈ K
such that F(a) = a.

The first difficulty is that ordinary Euclidean space
is non-empty and convex but not compact: the expand-
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ing 1D function F(~p ) = 2 ~p sends points off to infin-
ity and hence has no fixed point in Euclidean space.
We instead use projective space RPd, which is com-
pact because it includes points at infinity—such as the
fixed points of F(~p ) = 2 ~p. We survey several ways
to implement projective space in Section 3. We thus
define an image as a function from points in some d-
dimensional real projective space RPd (typically RP2:
2D space plus the circle at infinity) and returning a c-
dimensional color C ∈ [0, 1]c (typically simply c = 3
channels of red, green, and blue), so an image is a func-
tion I : RPd

→ [0, 1]c.
Note that without contractive maps, we are not guar-

anteed unique fixed points. For example, any point
symmetric image is a fixed point of the image-to-image
function F(I(~p )) = I(−~p ).

1.2. Nonlinear Iterated Function Systems
We define an Iterated Function System as a set of n

separate geometric distortion functions wi : RPd
→

RPd. For example, the 2D plane-filling IFS shown
in Figure 1 consists of these two geometric distortion
functions, which are a rotation plus translation, and a
simple nonlinear distortion.

w0(x, y) =

[
0.8 −0.4
0.4 0.8

] [
x
y

]
+

[
−1
0.3

]

w1(x, y) =

[
x/(x2 + y2)

y

]
We apply a geometric distortion function to an im-

age using an image distortion function Wi : I → I
defined as follows:

Wi(I(~p )) = I(w−1
i (~p )) |Jw−1

i
(~p )| (1)

Note that the function inverse in the geometric por-
tion of this transform I(w−1

i (~p )), as described in Sec-
tion 5, is equivalent to forward-transforming each point
in I by the geometric distortion function wi, as in Sec-
tion 4. The Jacobian determinant |Jw−1

i
(~p )|, as discussed

in Section 6, is present in order to preserve the inte-
gral of the transformed image, at least for well-behaved
map functions. This can be seen via the substitution
method for multiple integrals, where ~q = w−1

i (~p ).∫∫
Wi(I(~p )) d~p =

∫∫
I(w−1

i (~p )) |Jw−1
i

(~p )| d~p =

∫∫
I(~q ) d~q =

∫∫
I(~p ) d~p

Finally, the image-to-image function F : I → I is
defined as a combination of the image distortion func-
tions Wi and a set of constant color weights ci ∈ [0, 1]c.

F(I) =

n−1∑
i=0

ciWi(I)

If our overall image-to-image transform F is con-
tinuous, in the sense that the colors of the output image
depend continuously on the colors in the input image,
then in the convex nonempty compact domain RPd

×

[0, 1]c the Schauder-Tychonoff theorem guarantees F
has a fixed point. If the distortion function w−1

i is con-
tinuous, then the geometric distortions in F will be
continuous; and if the Jacobians |Jw−1

i
| change continu-

ously, the color intensity changes in F will be continu-
ous; thus by Schauder-Tychonoff F has a fixed point.

2. Calculating IFS Fixed Points

There are a variety of ways to calculate an IFS
fixed point, but the simplest is the random iteration
algorithm [3], also known as the chaos game. We be-
gin with a randomly chosen point ~x0 ∈ RPd, and re-
peatedly apply randomly chosen geometric distortion
functions ~x j = wi(~x j−1). A histogram of the resulting
point locations converges to the IFS fixed point, usu-
ally called an attractor in this context. For our exam-
ple, if we repeatedly apply the rotation w0, our points
form a simple spiral. If we repeatedly apply the non-
linear transform w1, our points rapidly approach the
X and Y axes. Yet if we randomly alternate between
these functions, the random iteration algorithm points
plot out the much more complex Figure 1. The under-
lying motivation behind this paper is that the random
iteration algorithm typically requires billions of points
to produce a smooth image, which is too slow to pro-
duce high quality animations in real time.

There are many other interesting methods to render
IFS—for a survey, see Nikiel’s recent book [4]. Mod-
ern practical applications of IFS range from fractal im-
age compression to artistic and rendering applications.
The particular functional form for our nonlinear IFS
map functions comes from Draves’ [5] fractal flames
nonlinear IFS, most commonly seen in his distributed-
rendering screensaver Electric Sheep [6, 7]. The non-
linear function w1 above is actually Draves’ function
“hyperbolic.”

Beyond IFS, recursive Lindenmayer or L-systems
[8] include the ability to pass parameters between re-
cursive instances. This makes them much more useful
than IFS to represent imperfectly self-similar shapes
such as plants, as extended by Prusinkiewicz [9]. In
fact, affine iterated function systems are actually equiv-
alent [10] to a restricted form of L-systems known as
turtle graphics. L-systems are often described as string
rewriting systems, which is a useful definition but an
extraordinarily inefficient implementation; L-systems
can be efficiently incrementally instantiated, for exam-
ple during ray tracing [11]. The context dependence
and parameter passing of L-systems makes them more
complex and difficult to analyze than IFS, so we will
confine our attention to IFS in this paper.
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2.1. Bounding Iterated Function Systems
Our overall goal is to render nonlinear iterated func-

tion systems using graphics hardware textures, which
are uniform-resolution rectangular grids of pixels. That
is, textures are bounded. But an IFS attractor may span
the unbounded plane, so we must somehow deal with
this mismatch.

A simple bounding method is to define each IFS
such that the attractor is known to lie within some bound,
such as the unit square. For example, if each map
function takes points inside the unit square to a sub-
set of the square, then by the recursive bounding theo-
rem [12] the unit square is guaranteed to bound the IFS
attractor. This is the approach taken by van Wijk [13],
Gröller [14], Raynal et al. [15], and several others. The
difficulty with this bounding method is that manipulat-
ing the IFS maps near the artificial boundary becomes
cumbersome; sometimes in order to make room to ma-
nipulate one map, the user needs to adjust all the other
maps, which seems unnecessarily difficult.

For any IFS we can transform the fixed point a by
any invertible function T , simply by adjusting the indi-
vidual map functions wi according to the well-known
[3] transform theorem. The new IFS has map functions
wi = T ◦ wi ◦ T−1. Essentially, the maps to represent
the IFS attractor in the new space are found by first
transforming points into the old space, applying the old
map, and finally transforming back to the new space.

This implies that we can allow users complete free-
dom in defining their maps, yet still do our IFS pro-
cessing on the convenient unit square, simply by find-
ing a suitable transformation function F. For example,
if we can find a bounding volume for the IFS attrac-
tor, we can then trivially compute an affine transfor-
mation of that volume to the unit square. Many au-
thors have taken this approach, including the simple
bounding sphere of Hart and DeFanti [16], the tighter
sphere of Rice [17] and the anisotropic sphere of Mar-
tyn [18]. Convex bounds include the linear program-
ming method of Lawlor and Hart [19], the bound re-
finement technique of Chu and Chen [20], and a heap-
based convex bound refinement method [21, Appendix
C]. Bounding volumes are also useful for raytracing
3D shapes, including affine IFS [16], Gröller’s grid-
deformation nonlinear IFS [14], and nonlinear CSG-
pL systems [11].

Yet bounding volumes are less useful for many non-
linear IFS, because in practice these systems are often
unbounded.

2.2. The Unbounded Non-Contractive IFS
An IFS attractor is bounded whenever the IFS map

functions satisfy the Lipschitz contractivity condition
[1]. Occasionally, a non-contractive IFS will nonethe-
less have a bounded attractor—contractivity is a suffi-
cient condition, but not necessary. Yet there are actu-
ally a variety of interesting iterated function systems,

Figure 2. An unbounded non-contractive affine IFS. Large grey
box is the reference unit square, black boxes the two maps.
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Figure 3. As additional maps are applied to the points of the IFS,
fewer and fewer codespace points have never had w1 applied.

including many nonlinear systems, that are unbounded
and non-contractive, yet are still visually interesting.

For example, the two map affine IFS of Figure 2
does not satisfy the contractivity condition, and indeed
its attractor extends to infinity along the thin horizontal
and vertical spikes. The map functions are:

w0(~x ) =

[
1.5 0
0 0.2

]
~x +

[
0.25
−0.4

]

w1(~x ) =

[
0 0.8

0.8 0

]
~x

This IFS is not contractive, because w0 stretches points
horizontally. Repeated compositions of w0 stretch out
points arbitrarily far. However, the attractor is still well
defined, and the random iteration algorithm very rarely
explodes points to infinity, because any application of
w1 will quickly bring distant points closer to the origin.

We agree with Saupe [22, pg. 310] that “There should
be interesting theory of non-contractive IFS.” Notice
that for rendering, it is acceptable if a few of our points
escape to infinity. We can even quantify this threshold,
for example by taking the Lebesgue measure of these
points at infinity. We can get reasonable Lebesgue
measures by lining up all the computed IFS points on
a 1D line, for example using Barnsley’s map-based
“codespace” coordinate system as illustrated in Fig-
ure 3. For our example non-contractive IFS, the 1D
Lebesgue measure is zero for the set of points that es-
cape to infinity.

Thus we can classify IFS as:

1. Contractive and hence bounded, the usual case
for affine IFS.
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Figure 4. Comparing 1D plane-to-square functions used to com-
press an infinite plane IFS onto a finite texture.

2. Non-contractive yet bounded, which exists but is
fairly rare.

3. Unbounded yet most1 points are finite, such as
the IFS above.

4. Unbounded with most points at infinity, a classic
non-convergent IFS.

Only IFS in that last class cause serious problems dur-
ing rendering, so in this paper we embrace unbounded
iterated function systems.

We have noticed that some map functions, includ-
ing that of Figure 1, cause the naive random iteration
algorithm to become stuck in one local area, rather than
properly sampling the entire attractor. This cannot hap-
pen for contractive affine maps, which have a single
attractive fixed point, but for non-contractive nonlin-
ear maps with multiple fixed points, it actually seems
to be fairly common. This can be remedied by peri-
odically restarting the random iteration algorithm at
a new random plane point. For a similar reason, the
output range of the random iteration algorithm’s ini-
tial random number generator is important, and gen-
erally a larger range will be more likely to correctly
sample a larger attractor. The deterministic algorithms
we present seem to be more robust against these ef-
fects, especially with a large initial attractor estimate
image.

3. Rendering Unbounded IFS on the GPU

To fit an IFS attractor into a GPU hardware tex-
ture, we must have a bounded IFS. But many of the
IFS we would like to render are unbounded, and the
attractor even includes a few points at infinity. Our so-
lution is to compress the unbounded IFS into an equiv-
alent bounded IFS, using an invertible but nonlinear
compression transform function. At display time, if

1“Most” here in a Lebesgue sense, comparing measures.

desired we can uncompress the attractor back into the
original plane.

In particular, we would like to convert plane co-
ordinates, in the interval (−∞,∞) on both axes, into
a square in graphics card texture coordinates, within
(0, 1) on both axes. The plane-to-square mapping we
choose must be smooth, because it will be used to write
discrete samples from an IFS attractor into a texture;
any discontinuities in the plane-to-square function will
manifest themselves as sampling artifacts in the tex-
ture. The function also must be invertible, so that we
can read samples of the IFS attractor from the texture.
Finally, both the function and its inverse must be effi-
cient to compute on the graphics card, because every
access to the texture will require at least one execution
of the function.

The quite similar general shapes of several such
functions are compared in Figure 4, and their equa-
tions and performance are compared in Table 1. Of
these, the fastest functions on current GPU hardware2

are the 2D polar stereographic projection stereo, and
the per-axis equivalent projection rsqrt. We attribute
the excellent speed of these two functions to the fact
that reciprocal-square-root is a GPU hardware instruc-
tion.

Comparing these two, there is slightly more shape
distortion in the rsqrt version. While rsqrt com-
presses an infinite plane to the unit square, stereo
compresses the plane into a unit disk, as illustrated in
Figure 5(b). These two functions are identical pre-
cisely along the x and y coordinate axes, but since
GPU textures are square, rsqrt produces fewer sam-
pling artifacts along the diagonal lines. This is es-
pecially true near the points at infinity, which rsqrt

cleanly maps to the texture’s outer boundary pixels,
while stereo maps to a pixel-discretized approxima-
tion of a circle.

For this reason, we use rsqrt as our compression
and decompression scheme; it seems to work well to
transform an unbounded IFS into an equivalent bounded
IFS. Due to sampling issues, some IFS may benefit
from an additional pre-rsqrt affine plane transforma-
tion, typically just a translation and scaling. But be-
cause plane-to-square functions are necessarily nonlin-
ear, we may need to render a (bounded) nonlinear IFS
even if the original IFS was linear (but unbounded).
We explore several approaches to render a bounded
nonlinear IFS in the next two sections.

4. Inverting Functions per Vertex by Rasterization

Barnsley’s Deterministic Iteration Algorithm [3] de-
termines an IFS fixed point A, by iteratively following

2GPU performance measured on an NVIDIA GeForce 280 GTX.
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Name Description Plane to Texture Function Texture to Plane Function Timing

erfc Gaussian error function T (p) = erfc(p)/2 P(t) = erfc−1(2 t) 0.40 ns

atan Trigonometric tangent T (p) = arctan(p)/π + 1
2 P(t) = tan(π t − π

2 ) 0.16 ns

rsqrt Reciprocal square root T (p) = p/(2
√

1 + p2) + 1
2 u = 2 t − 1; P(t) = u/

√
1 − u2 0.08 ns

stereo Polar stereographic T (~p) = ~p/(2
√

1 + ~p · ~p) + 1
2 ~u = 2~t − 1; P(~t) = ~u/

√
1 − ~u · ~u 0.08 ns

Table 1. Compression and decompression functions, and corresponding GPU per-pixel performance. erfc, atan, and rsqrt are
evaluated independently along each axis; stereo is a 2D vector function. erfc is not built into GLSL, though it exists in CUDA.

0 1 2 3 4 ...

...

8

Figure 6. As we repeatedly distort our texture by the IFS map functions, the texture iteratively approaches the attractor (see Figure 16).

(a) rsqrt (b) stereo

(c) Reconstructed Planar View

Figure 5. Comparing 2D rsqrt and stereo textures.

its definition as the union of its images under the IFS
maps Wi:

A = ∪n−1
i=0 Wi(A)

In this method, we approximate the IFS attractor A
using a rectangle of p × p pixels in a GPU texture—
hence the attractor must be bounded, for example us-
ing one of the techniques discussed in Section 3. At
each step k, we create a better approximation of the
attractor Ak by applying the IFS maps to the previous
approximation Ak−1 (for now, ignoring map probabili-
ties, colors, and density effects) with:

Ak =
∑
i=0

Wi(Ak−1) (2)

Repeatedly applying this process eventually con-
verges on the attractor, as illustrated in Figure 6. In
practice, many IFSs produce a good attractor estimate
in as few as a dozen such map iterations. In theory we
can begin the iteration with any arbitrary approxima-
tion A0, typically either a unit square or entire plane,
or the solution from the previous frame or multigrid
level (see Section 7.4).

On the GPU, we can implement Equation 2 by sim-
ply rasterizing each mapped attractor image Wi(Ak−1)
into the framebuffer Ak. For affine maps, even an-
cient graphics interfaces such as OpenGL 1.1 directly
support this rasterization; van Wijk and Saupe [13]
found excellent GPU performance for affine IFS back
in 2004. However, nonlinear maps are substantially
more difficult to rasterize with high quality.

One obvious approach to render nonlinear map im-
ages on graphics hardware is to discretize our old at-
tractor estimate Ak−1 using a grid of v × v vertices V jk.
Then we can transform each vertex V jk by each map
function wi, and then draw the attractor texture interpo-
lated between the mapped vertices in the usual fashion,
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(a). Per-vertex forward rendering, Section 4

(b). Per-pixel inverse lookup, Section 5

source destination

source destination

Figure 7. Two approaches for distorting a texture by an IFS
map: per-vertex forward application of maps, and per-pixel in-
verse mapping.

as illustrated in Figure 7(a) and the following CPU-
side pseudocode.

texture A=init attractor estimate();

texture D; // destination texture

do { // iterative attractor refinement

set framebuffer(D); // render to D

clear framebuffer();

for (int i=...) { // loop over IFS maps

mesh m=new mesh(v,v); // v× v vertices

for (int j=...) { // loop over vertices

vec2 texcoord=V j; // fixed source

vec2 geometry=wi(V j); // destination

m.add vertex(texcoord,geometry);

}

// texture the map’s geometry using A

draw textured mesh(A,m);

}

A=D; // copy out our new estimate

} until (... attractor converged ...);

In practice, the A=D step is typically implemented
by swapping the two texture handles, a “ping-pong,”
rather than actually copying any data.

This per-vertex algorithm works well for smooth
map functions, when linearly interpolating the mapped
geometry between vertices would be reasonably accu-
rate. Gröller’s [14] nonlinear IFS maps are actually de-
fined as a linearly interpolated vertex grid. Clearly, an
adaptive mesh refinement scheme [11] or higher-order
vertex interpolation would improve accuracy. How-
ever, neither adaptivity nor high-order schemes will
work if the map function jumps discontinuously.

In any case high quality images or less-smooth map
functions require a dense set of vertices, which causes
several increasingly unfortunate effects. First, the ver-
tex work per map per iteration soon overwhelms the

(a) (b)

Figure 8. Comparing per-vertex and per-pixel nonlinear maps.

CPU’s arithmetic capacity. This problem is fairly easy
to address by simply moving the wi(V j) computation
into a vertex shader, which yields about a tenfold per-
formance improvement in our experiments. One could
also prepare a vertex buffer object for each map, since
the mesh does not change across iterations, only the
texture shown on it. But we then reach a far more seri-
ous bottleneck, which is the GPU’s triangle setup rate.

Theoretically, to achieve a framerate of f frames
per second, when repeating r iterative attractor expan-
sions per frame, each of which draws m maps with a
grid of v × v vertices, requires the graphics card to
draw 2 f rmv2 triangles per second. For example, at
f = 20 frames per second, with just r = 10 iterations
per frame, m = 3 maps, and v = 1000 vertices per side,
would require 1.2 billion triangles per second. Though
a typical modern GPU can process tens of billions of
pixels per second (known as “fill rate”), even the best
cards process less than a billion triangles per second,
so even this moderate end-to-end performance is not
achievable via vertex shaders. See the performance ex-
periments in Section 7.3 for details.

Also, a dense grid of v = 1000 vertices per side
may not be enough vertices. For example, consider an
IFS using the “sinusoidal” map function, which col-
lapses the entire plane into a cube via the sine function;
clearly Nyquist-level vertex sampling over an infinite
plane is impossible. In Figure 8(a), even at v = 1000
the vertex geometry used to discretize this map func-
tion is still visible. By contrast, Figure 8(b) shows the
much cleaner results obtained via the per-pixel analytic
map inversion method described in the next section.

5. Analytic Per-Pixel Function Inversion

Arbitrary nonlinear functions may combine sharp
discontinuities, smooth curves, and high-frequency re-
gions that are all difficult to sample accurately. But
we are trying to render an attractor estimate texture Ak,
so sampling in the destination space is trivially simple,
a regular grid of pixels. That is, instead of trying to
sample the function Wi(Ak−1) so that the resulting ge-
ometry covers Ak with sub-pixel accuracy, we instead
follow Equation 1 directly and start at a pixel Ak(~t )
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with 2D destination texture coordinates ~t, and sample
the source texture Ak−1 at source texture coordinates
w−1

i (~t ).
In equations, we start from Barnsley’s whole-image

set-theoretic deterministic iteration method, where we
must apply a nonlinear image distortion Wi to an entire
image Ak−1:

Ak = ∪n−1
i=0 Wi(Ak−1)

Hence we switch to a pixel-by-pixel function inver-
sion, starting in the destination space:

∀~t ∈ RPd Ak(~t ) =

n−1∑
i=0

Ak−1(w−1
i (~t )) |Jw−1

i
(~t )| (3)

This approach maps perfectly to graphics hardware
pixel shaders: Ak is the framebuffer, Ak−1 is bound as
a source texture, and we compute the source texture
coordinates w−1

i (~t ) and Jacobian via a programmable
shader.

But by contrast with affine maps, which only lack
an inverse function for degenerate cases, there are a
number of practical and theoretical difficulties with in-
verting general nonlinear functions.

5.1. Handling Multivalued Nonlinear Inverses

Many nonlinear functions have no well-defined in-
verse function, but instead have a multi-valued inverse
relation. For example, the inverse of the 1D function
V(x) = x2 has both positive and negative branches
V−1(s) = ±

√
s; the inverse of the 2D function V(x, y) =

(x2, y2) has four branches V−1(s, t) = (±
√

s,±
√

t). In
practice, we can often simply sum up the quantity of
interest, such as an attractor density estimate, over each
of the inverse values. Of course, periodic functions
such as V(x) = sin(x) have infinite families of inverses,
so in practice we must eventually truncate this summa-
tion; typically we find summing up a few periods is
sufficient.

A further complicating factor is that the current
generation of GPU hardware supports neither dynam-
ically sized arrays, nor virtual functions, nor function
pointers, nor even simple recursion. This complicates
any design supporting multi-valued inverses—we can-
not dynamically allocate a list of inverse values, we
cannot call a virtual method or function pointer for
each inverse we find, and we cannot recursively search
for values. However, with some graphics interfaces,
such as GLSL or OpenCL, we do generate the GPU
functions at runtime; this means each time we find
an inverse, at function generation time we can simply
paste in a call to the function needing the inverse value.

In particular, our output pixel Ak(~t ) will require
texture samples from the input texture Ak−1 at each in-
verse value found for the inverse map w−1

i (~t ), as illus-
trated in Figure 9. In the forward direction, a typical

source destination

F

F

Figure 9. Highly nonlinear maps may have multiple inverses.

IFS map w consists of a texture-to-plane decompres-
sion function P (from Section 3), then an affine matrix
transformation M, then a nonlinear “variation” func-
tion V , and finally a plane-to-texture re-compression
function T :

vec2 destloc=T(V(M(P(srcloc))));

To look up texture values for each inverse, we sim-
ply apply the inverse of each transformation, w−1 =

P−1 ◦ M−1 ◦ V−1 ◦ T−1, and then look up the resulting
points in the source texture. Due to the above GPU
hardware limitations, we split the call sequence after
the nonlinear inverse step V−1 ◦T−1, and put P−1 ◦M−1

into a separate function, here called f. This lets our
nonlinear inverse relation simply call f at each inverse
value, and sum up the densities it returns:

vec4 nonlinear inverse(vec2 destloc)

{ // sum up IFS’s density at destloc

vec2 st=P(destloc); // (s,t)= T−1

vec2 srcloc=. . .; // V−1(s,t) see Table 2

return f(+srcloc) // positive branch

+ f(-srcloc); // negative branch

}

vec4 f(vec2 srcloc) // post-V coordinates

{ // return IFS’s density at srcloc

vec2 srctex=T(Minv(srcloc)); // P−1(M−1)
return density(texture2D(src,srctex));

}

Because we can generate the exact code to invert
only the maps of the IFS currently being rendered, this
approach seems to perform quite well. A more static
code structure, that compiled in code for every sup-
ported nonlinear IFS map function, would require a
large switch statement or nested series of comparisons
to select the appropriate nonlinear function, neither of
which would perform well on current GPU hardware.
Although we dynamically generate the code above at
runtime, the GLSL driver takes a few milliseconds to
recompile the code, so for animation purposes rather
than recompiling every frame, we pass in function pa-
rameters via uniform variables. This means we only
need to recompile when the functional form of the IFS
changes, not just its parameters.

In practice, the sampling properties of this per-pixel
inversion method seem to be excellent. Further, the

7



texture sampling hardware provides both linear tex-
ture filtering when a map sample lands between source
texture pixels, and anisotropic mipmapping when the
mapped sample should read from a larger area. Com-
pared to the conventional random iteration algorithm,
per-pixel inversion gives extremely smooth images such
as Figure 1, especially in low-density regions where
the random iteration algorithm’s discrete points are far
apart. Compared to the per-vertex deterministic iter-
ation algorithm described in the previous section, this
per-pixel algorithm follows mapped curves more accu-
rately and handles map function discontinuities more
cleanly.

5.2. Nonlinear Inverses May Not Exist
Simple nonlinear functions sometimes have very

complicated inverses, both in terms of execution time
and code complexity. For example, Cardano’s solution
is much more complex than a cubic polynomial. Com-
puter algebra systems can help to find and simplify in-
verse relations, although substantial human effort is of-
ten still required to create and test working code.

Table 2 summarizes the first twenty nonlinear “vari-
ation” functions proposed by Draves [5]. We found
easy-to-compute inverse relations for thirteen of these
functions; two additional functions do have inverses,
but they are too complex to write here, and likely too
complex to actually use at runtime.

The remaining five functions appear to have non-
elementary inverses, but it is rare one can prove the
non-existence of an elementary inverse relation. We
attempted to find inverses using both the computer al-
gebra system Mathematica 7.0 and manual effort, but
neither found an inverse in a reasonable time.

Many nonlinear functions simply do not possess an
elementary inverse. For example, V(x) = sin(x) + x
does not have an elementary inverse, nor does a gen-
eral fifth-degree polynomial. Though function inverse
reverse-distributes over composition (F ◦G)−1 = G−1 ◦

F−1, few other relations hold; for example, knowing
F−1 and G−1 tells you nothing about (F + G)−1 or (F ∗
G)−1.

In these cases inverse values could still be numer-
ically approximated using a power series (for exam-
ple, via the Lagrange inversion theorem), or using a
generic nonlinear root-finding approach such as bisec-
tion or Newton’s method. These approximations could
be precomputed and stored in a texture, or evaluated at
runtime per pixel, depending on the hardware’s ratio of
memory and arithmetic bandwidth.

An entirely different solution to the difficulty of
function inversion is to simply invert the definitions:
choose easy to evaluate functions as the “inverses” w−1

i
and apply these functions directly in the deterministic
iteration algorithm. The “forward” functions wi are
then equally difficult to compute, but our algorithm
never needs to compute them. Typically an automated

image compressor or artist chooses from a fixed set
of pre-defined basic functions anyway, so defining the
map functions this way is less restricting than it may
seem.

6. Attractor Density Estimation

The Jacobian determinant |Jw(~x)| of the function
w : RPd

→ RPd at a point ~x ∈ RPd is defined in
2D as the determinant of the function’s 2 × 2 Jacobian
matrix of partial derivatives, evaluated at ~x:

Jw(~x ) =

 ∂w.x
∂x

∂w.x
∂y

∂w.y
∂x

∂w.y
∂y

 (~x )

Expanding out the determinant, we get:

|Jw(~x )| =
(
∂w.x
∂x

∂w.y
∂y
−
∂w.x
∂y

∂w.y
∂x

)
(~x )

Substantial cancellation often occurs in this expres-
sion, so computing Jacobian determinants in practice is
normally quite efficient.

For affine map functions, the Jacobian is a con-
stant, so it is often folded together with the arbitrary
map probability. But for our nonlinear maps, the Jaco-
bian determinant may vary with location, so we cannot
simply fold it into the constant map probability.

Note that we must in general evaluate the Jacobian
determinant after inverting the function, because our
nonlinear function inverses can take multiple values,
yet not all these values will necessarily have the same
Jacobian.

Sometimes the Jacobian of the forward function Jwi

is simpler to evaluate than Jw−1
i

, in which case we use
the fact that the inverse of the Jacobian matrix is the
Jacobian of the inverse function, and applying the de-
terminant transforms a matrix inverse into a multiplica-
tive inverse.

|Jw−1
i

(~p )| = |[Jwi (w
−1
i (~p ))]−1| = 1/|Jwi (w

−1
i (~p ))|

We show the Jacobian determinants for a variety
of nonlinear functions in Table 2. Some extremely
nonlinear functions such as “swirl” nonetheless have a
constant Jacobian determinant, indicating swirl is area-
preserving everywhere. It is noteworthy that each of
the nonlinear functions we were able to invert has a
simple Jacobian determinant, indicating some underly-
ing simplicity. The non-invertible functions we exam-
ined, even those with superficially similar functional
form, all had substantially more complex Jacobian de-
terminants. Despite this still-moderate complexity, un-
like function inverses, every elementary function also
has an elementary Jacobian.

It is also possible to evaluate Jacobian determinants
numerically. Some graphics programming languages
even include builtin primitives for this, such as GLSL’s
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Function Forward V(x, y), with r =
√

x2 + y2 Inverse V−1(s, t), with r =
√

s2 + t2 Jacobian

1. Sinusoidal
[

sin x
sin y

] [
sin−1 s
sin−1 t

]
plus multiples of π cos x cos y

2. Spherical
[

x
y

]
/r2

[
s
t

]
/r2 1/r4

3. Swirl
[

x sin r2 − y cos r2

x cos r2 + y sin r2

] [
s sin r2 + t cos r2

−s cos r2 + t sin r2

]
1

4. Horseshoe
[

(x − y)(x + y)
2xy

]
/r y = ±

√
(r2 − sr)/2; x = y(s + r)/t 2

5. Polar
[
θ/π

r − 1

]
(t + 1)

[
sin(πs)
cos(πs)

]
1/(πr)

7. Heart r
[

sin(θr)
− cos(θr)

]
r
[

sin((atan2(s,−t) + 2πk)/r)
cos((atan2(s,−t) + 2πk)/r)

]
r

8. Disc θ/π

[
sin πr
cos πr

]
(atan2(s, t)/π + 2k)

[
sin πr
cos πr

]
θ/(πr)

10. Hyperbolic
[

(sin θ)/r
r cos θ

]
=

[
x/r2

y

] [
(1 ±

√
1 − 4s2t2)/2s

t

]
cos(2θ)/r2

13. Julia ±
√

r
[

cos(θ/2)
sin(θ/2)

]
= ±

[ √
(r + y)/2

x/|x|
√

(r − y)/2

]
r2

[
sin(2θ)
cos(2θ)

]
=

[
2st

(s − t)(s + t)

]
1/(4r)

14. Bent


[x y]T if x ≥ 0, y ≥ 0
[2x y]T if x < 0, y ≥ 0
[x y/2]T if x ≥ 0, y < 0
[2x y/2]T if x < 0, y < 0


[s t]T if s ≥ 0, t ≥ 0
[s/2 t]T if s < 0, t ≥ 0
[s 2t]T if s ≥ 0, t < 0
[s/2 2t]T if s < 0, t < 0


1
2
1/2
1

16. Fisheye 2/(r + 1)
[

y
x

]
1/(2 − r)

[
t
s

]
4/(1 + r)3

18. Exponential ex−1

[
cos πy
sin πy

] [
log(r) + 1.0
atan2(t, s)/π

]
πe2x−2

19. Power rx/r−1

[
y
x

]
rr/s−1

[
s
t

]
r2x/r−2 x/r

Function Forward V(x, y) Inverse Jacobian Determinant

6. Handkerchief r
[

sin(θ + r)
cos(θ − r)

]
Non-elementary cos 2r +

2xy
r − r sin 2r

9. Spiral
[

cos θ + sin r
sin θ − cos r

]
/r Non-elementary (1 − r cos(r − θ) + sin(r − θ))/r2

11. Diamond
[

sin θ cos r
cos θ sin r

]
32 root families (cos(2r) + 2y2/r2 − 1)/2r

12. Ex r
[

sin3(θ + r) + cos3(θ − r)3

sin3(θ + r) − cos3(θ − r)3

]
Non-elementary

(6xy + r cos 2r − 3r2 sin 2r)
∗(−3/(2r)) ∗ (sin 2r + xy/r2)2

15. Waves
[

x + a1 sin(a2y)
y + a3 sin(a4 x)

]
Non-elementary 1 − a1a2a3a4 cos(a4 x) cos(a2y)

17. Popcorn
[

x + a1 sin(tan 3y)
y + a2 sin(tan 3x)

]
Non-elementary

1 − 9a1a2 cos(tan 3x) cos(tan 3y)
+ sec2(3x) sec2(3y)

20. Cosine
[

cos(πx) cosh y
− sin(πx) sinh(y)

]
16 root families π/2(− cos 2πx + cosh 2y)

Table 2. Functions and inverses are discussed in Section 5.2 and used for per-vertex and per-pixel rendering respectively. The Jacobian
determinants are used in Section 6 for attractor density; only the forward direction is shown for the Jacobians. θ stands for arctan(x/y) or
arctan(s/t), the reciprocal of their normal usage for compatibility with Draves’ large existing library of nonlinear fractals.
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dFdx and dFdy keywords, which compute a finite dif-
ference by examining neighboring pixels. However,
we find that analytically evaluated Jacobians are better
behaved near discontinuities, and are less susceptible
to numerical and sampling artifacts.

6.1. Properties of the Density Jacobian
In general, because the Jacobian is assembled from

partial derivatives, a straightforward application of the
chain rule can determine the Jacobian of the composi-
tion of two functions A and B:

JA◦B(~x ) = JA(B~x)JB(~x)

So, for example, a variation function V applied af-
ter a matrix M will have Jacobian

JV◦M(~x ) = JV (M~x)‖M‖

That is to say we evaluate V’s Jacobian after first trans-
forming ~x, then multiply by the matrix’s Jacobian.

We can ignore the Jacobian contributions from the
plane-to-texture compression and decompression func-
tions T and P from Section 3, because they will cancel
each other out. That is, we can compute the attractor
density for the original infinite-plane IFS, although we
sample that density geometrically only at the texture
pixels. This results in an easier-to-interpret density—
with T and P included, the choice of these plane com-
pression functions affects the resulting attractor den-
sity values, not just their sampling geometry. Avoiding
the plane-to-texture and texture-to-plane Jacobian con-
tributions this way also saves a little arithmetic work
during rendering.

6.2. Jacobian Density Estimation on the GPU
The dynamic range of the Jacobian determinant term

can be quite large. Draves [5] applies a nonlinear log-
exposure function after accumulating counts into a high-
range framebuffer. We find that the modern GPU ex-
ponential and log functions are fast enough that we can
actually store the log2 of the density in our texture pix-
els, and “unpack” this density using an exponential op-
eration after every texture fetch. Arithmetic can then
performed in high range linear-density space, while all
storage happens in the range-limited log space.

These nonlinear density unpack and pack functions
are implemented in GLSL as follows. Our texture color
channels store numbers in the interval [0, 1] using 8
bits of precision. The factor of 20 below lets us store
a density dynamic range of 220, about a millionfold,
which seems to be enough for most IFS to create smooth
attractive images. On modern GPU hardware, it is ac-
tually several times faster to use 8-bit fixed-point mem-
ory storage and expand the range in software using
these exponential and logarithm operations, than it is
to simply use 32-bit floating-point storage without any
additional arithmetic.

(c)

(b)

(a)

Figure 10. The IFS of Figure 1 rendered (a) with linear output, no
Jacobian; (b) with Jacobian; (c) log output with Jacobian.

vec4 density=exp2(tex*20)-1; // unpack

vec4 tex=log2(density+1)/20; // pack

For per-vertex rendering, this unpack-sum-pack op-
eration is not possible as a standard framebuffer blend
operation, so one must resort to rendering the map into
a separate texture, then performing the blending man-
ually in a second pass. For per-pixel rendering, we
can actually fetch, unpack, and sum up the densities
for all the IFS maps in a single pass, and then apply
the log transformation before writing the pixels out to
the framebuffer. We illustrate the effect of the Jaco-
bian and log-density output in Figure 10, and show the
details in the complete code example in Figure 14.

Finally, we can add RGBA color to our attractor
by multiplying the output of each Wi with a color ci—
this is equivalent to adjusting the color of each func-
tion’s output pixels. This is why we use a four float
“vec4” above, and it is equivalent to the method of iter-
ating a color through the IFS maps along with position.
Draves’ fractal flames use a different method, where a
single “color” index is iterated along with position, and
then looked up in a 256-entry color lookup table be-
fore blending to the framebuffer; his approach makes
it easier to highlight substructures in the attractor, and
could be emulated by simply using more color chan-
nels in the texture, but we find the classic IFS coloring
method to be sufficient. Plane-to-texture compression,
per-pixel inversion, Jacobian density estimation, and
log density output all combine well to render nonlin-
ear IFS in color on the GPU.
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7. Performance Comparisons

The Graphics Processing Unit (GPU) has evolved
quickly over the last decade, so current GPUs can now
run sophisticated C-like code fragments at every pixel.
Because GPU languages such as GLSL, OpenCL, or
CUDA do not allow dependencies between pixels, the
GPU hardware can execute these programs in parallel
across pixels. A GPU typically executes hundreds of
pixels per clock, with thousands of pixels in flight, and
so delivers orders of magnitude higher performance
than multicore [23]. GPUs have hardware support to
both read and write textures, which are 2D or 3D ar-
rays of pixels or voxels stored in a variety of formats.
The main advantage of using C++ and OpenGL is that
the same code can be run on Windows, Macintosh, and
UNIX computers.

Many researchers have rendered iterated function
systems at interactive rates. In 1995, Monro and Dud-
bridge [24] achieved nearly 1M pixels per second us-
ing a fixed point SIMD within a register software im-
plementation. In 2004, for affine IFS a deterministic
GPU texture-based implementation completed about
13M pixels per second [13] (50fps for a 512x512 out-
put image). In 2005, a GPU-based nonlinear IFS ren-
der to vertex buffer implementation of the random iter-
ation algorithm completed 20M finished output points
per second [25] (20fps for a 1M point buffer). The
state of the art as of late 2011 appears to be 1 billion
point-iterations per second, achieved using a highly
optimized random iteration algorithm implementation
in CUDA [26].

7.1. Theoretical Performance Comparison

We define an IFS image as an estimate of the true
proportion p of random iteration algorithm trials which
hit that pixel.

The random iteration algorithm computes those pix-
els stochastically, where each trial either hits a pixel or
does not, and hence a pixel’s hit count obeys the well
known binomial distribution with variance p(1 − p).
Thus assuming the central limit theorem, after n trials
our estimate’s variance is p(1− p)/n. An Agresti-Coull
95% binomial confidence interval has a width of ap-
proximately 4

√
p(1 − p)/n. Thus to halve the image

noise, we must compute four times as many samples.
Especially with gamma correction, which has a steeper
response for darker pixels, this sub-linear convergence
rate is a problem in darker areas of the image.

In the deterministic iteration algorithm, by contrast,
every pixel receives a density estimate during every
image pass. This makes deterministic iteration im-
ages smoother, especially in dark regions. However,
it may take several iterations before the images begin
to converge to the attractor, and for pathological cases
may never converge at all. This happens rarely in prac-
tice, because repeated geometric scaling drives points
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Figure 11. Comparing our algorithm at various texture resolu-
tions with existing GPU and CPU based random iteration ap-
proaches. (GeForce 580)

to their destinations exponentially fast: points under-
going a scaling factor of s move by sn after n passes. If
s is below unity, a contraction, points converge to the
attractor at a well-known exponential rate; even if s
is over unity, an expansion, points similarly approach
their fixed point of infinity at an exponential rate. In
fact, to begin the random iteration algorithm, typically
a few dozen “fuse” iterations are performed to con-
verge points to the attractor before beginning to accu-
mulate pixel counts. Experimentally it takes a similar
number of image-to-image iterations, typically about a
dozen, for the deterministic iteration algorithm to con-
verge, at which point the algorithm is finished.

In addition to the exponential difference in conver-
gence rate, the random iteration algorithm produces
points stochastically, at unpredictable locations; even
ignoring efficiency these random writes are difficult to
parallelize correctly. By contrast, the deterministic it-
eration algorithm produces image samples at every im-
age pixel, which allows the image rendering work to be
divided among many parallel processors in a straight-
forward fashion.

7.2. Quantitative Performance Comparison

Figure 11 compares the performance of our algo-
rithm with two existing random iteration algorithm non-
linear IFS renderers. The vertical axis in this com-
parison is Chandler and Hemami’s Visual Signal to
Noise Ratio (VSNR) [27], a perceptually-based im-
age comparison method computed using wavelets and
measured in decibels. The IFS used for this compari-
son is the “swirlpinski” IFS from Figure 16, rendered
at 1024 × 1024 resolution, but other display sizes and
rendered IFS appear to display similar relative perfor-
mance.

flam3 [7] version 2.8 is a well tuned multicore aware
CPU based library for rendering nonlinear IFS using
the random iteration algorithm. The CPU is a 3.1GHz
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quad-core Intel Core i5 2400, using all four cores. The
performance versus accuracy trade-off can be adjusted
using the “quality” parameter, which is the number of
random iteration algorithm trials per pixel: a quality of
1 executes in under one second, but produces a very
noisy stochastic image; while a quality of 1,000,000
takes most of a day to execute but produces an excel-
lent image. Since this is the oldest and most widely
used existing nonlinear IFS renderer, we use this ren-
derer with 1,000,000 trials per pixel as the reference
implementation.

flam4CUDA [26] is a well tuned CUDA implemen-
tation of the random iteration algorithm. The GPU
is an NVIDIA GeForce 580 desktop card, the same
used for our algorithm below. flam4CUDA uses sev-
eral quite clever optimizations, such as per-warp ran-
dom number generation, to synthesize random points
while maintaining good branch coherence. One seri-
ous inherent shortcoming of the random iteration al-
gorithm approach on highly parallel architectures is a
floating point read-modify-update race condition while
writing points to the framebuffer. flam4CUDA cur-
rently ignores this race condition, because it is not clear
how to resolve it efficiently on the GPU. flam4CUDA
and flam3 also use slightly different spatial antialias-
ing (flam4CUDA uses per-pixel jitter) and gamma cor-
rection schemes. Finally, the density estimation fil-
ter radius is limited by the size of GPU shared mem-
ory, so it is difficult to directly compare image outputs.
For these reasons, in the figure we generously assume
flam4CUDA’s output image was identical to the flam3
output image given the same number of trials per pixel.
flam4CUDA finishes these same trials approximately
40× faster than flam3, and is performance-competitive
with our algorithm for large image sizes, but does not
scale down as well to interactive rates.

Our algorithm displays several separate regimes de-
pending on parameters. Small output texture sizes can-
not represent the sharp features in the IFS, and hence
are limited to low VSNR regardless of run time. Very
large images, over 4096 × 4096, produce only minor
improvements in the finished image quality, mostly be-
cause we must scale down to compare against the 1024×
1024 reference image. At the crucial 10ms to 50ms in-
teractive animation range, our algorithm can comfort-
ably compute screen-sized textures accurately. Gen-
erally, convergence to the final output begins slowly
and ends extremely rapidly, with most of the VSNR
gains happening in one or two crucial iterations be-
fore converging. This rapid convergence, as predicted
in the previous subsection, compares favorably against
the exponentially slower accumulation process of the
random iteration algorithm.

However, to compute extremely high quality im-
ages exactly, our algorithm may require very high reso-
lution textures. Note the slight blurring at the left edge
of Figure 12, where the swirl map repeatedly shears

Our Algorithm - 0.5 seconds flam3 - 400 seconds

Figure 12. A zoomed-in portion of the swirlpinski fractal, com-
puted using the deterministic and random iteration algorithms.

the texture. To exactly duplicate the results of the 2D
random iteration algorithm using IEEE 32-bit floating
point arithmetic would require an image of size 232 ×

232, using exabytes of storage. For this reason, in some
situations very high quality images may be rendered
more accurately by the random iteration algorithm, while
our algorithm dominates below one second of compute
time, the region most useful for image compression or
animation applications.

7.3. Vertex vs. Fragment Rendering

Our deterministic iteration algorithm consists of an
iterative series of passes where we apply Equation 1 to
our textured attractor approximation, slowly improv-
ing the approximation. The performance of each pass,
using our per-pixel and per-vertex methods at various
resolutions is summarized in Table 3. This subsec-
tion’s performance numbers are presented for the two-
map nonlinear IFS shown in Figure 1, on an NVIDIA
GeForce GTX 280, a midrange desktop graphics card.

The per-vertex rendering algorithm is substantially
slower for small output textures, even for a low ver-
tex resolution of v = 100 × 100 vertices. Both algo-
rithms scale poorly to very small meshes, because the
framebuffer object setup time and post-render mipmap
building dominate the actual rendering work. The per-
vertex algorithm is slightly faster than the per-pixel
method at low vertex and high pixel resolutions, be-
cause the per-pixel method must consider and discard
a large number of pixels that are not touched by the
map function output. But at a higher vertex resolution
of v = 1000 × 1000, the per-vertex method becomes
vertex-rate dominated, so it takes almost exactly the
same amount of time to output to a tiny texture as
a huge one, and much more time than the per-pixel
method in any case. It takes 46.8ms to draw both maps
using a mesh of 1 million vertices each, which is 2 mil-
lion triangles per map or 4 million triangles per pass, a
net triangle rate of 85 million triangles per second.
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Resolution Per-Pixel v = 100 v = 1000
32 × 32 0.07ms 0.55ms 46.7ms
64 × 64 0.08ms 0.56ms 46.7ms

128 × 128 0.09ms 0.57ms 46.7ms
256 × 256 0.11ms 0.57ms 46.8ms
512 × 512 0.17ms 0.58ms 46.8ms

1024 × 1024 0.41ms 0.59ms 46.8ms
2048 × 2048 1.31ms 0.99ms 46.8ms
4096 × 4096 4.97ms 3.44ms 46.8ms

Table 3. GPU time per pass for various texture sizes, as rendered
with the per-pixel and per-vertex methods. (GeForce 280)

By contrast, the per-pixel algorithm can make one
complete pass through a 4096×4096 texture, applying
the plane-to-texture transform, both map functions, the
Jacobian density compensation, and our log-density out-
put packing, in under 5ms. This is a total of 3.3 bil-
lion color pixels written per second, 6.7 billion map
function applications per second, or over 0.3 trillion
floating-point operations per second—many of which
are divides, square roots, exponentials, and logarithms.

7.4. Multigrid Rendering

Table 3 shows that our iterative per-pixel render-
ing algorithm is much faster per pass when working on
small output textures, such as 128 × 128 pixels. Al-
though we can still discretize the entire plane, such a
tiny texture doesn’t provide much detail, so it is not
useful as a final output. However, depending on the
initial attractor estimate, the first few passes will be se-
riously inaccurate until we begin to converge on the
IFS attractor’s general shape.

This suggests a multigrid-type approach, where in-
stead of performing all the passes at the highest output
resolution, we perform early passes on much smaller
textures until we are near convergence, and then we
can incrementally increase the texture resolution up to
the final size. Table 4 summarizes the performance re-
sults from this, where we compare ten passes at each
of eight power-of-two multigrid levels, versus eighty
passes all at the highest resolution. Multigrid provides
the biggest performance improvement, over five fold,
for larger output images, but it makes a significant dif-
ference even at lower resolutions. For example, at a
final output resolution of 2048 × 2048, the multigrid
implementation still runs at well over 30fps, while the
fixed-size implementation is under 10fps. As shown in
Figure 13, multigrid provides equivalent visual quality
much faster than any existing implementation.

Multigrid is surprisingly easy to implement when
using OpenGL’s default texture coordinates, which run
from 0.0 on one edge of the texture to 1.0 on the op-
posite edge. Because the entire rendering coordinate
system is independent of the number of pixels used in

Resolution Multigrid Fixed-Size
512 × 512 10.9ms 13.7ms

1024 × 1024 14.4ms 32.4ms
2048 × 2048 26.8ms 105.0ms
4096 × 4096 76.0ms 398.4ms

Table 4. End-to-end time to generate Figure 1 using multigrid
and fixed-size per-pixel rendering, for a constant 80 passes total.
(GeForce 280)
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Figure 13. Comparing performance versus visual quality for
multigrid, non-multigrid, and random iteration. (GeForce 580)

either the source or destination texture, we can sim-
ply substitute a higher-resolution destination texture to
switch from one grid level to the next. Compared to
array indices or pixel numbers, which have different
values at different resolutions, and yet different values
when switching resolutions, resolution-independent co-
ordinates significantly reduce the complexity of a multi-
grid implementation.

8. Conclusions and Future Work

We have presented a set of techniques that allow
nonlinear function fixed points and iterated function
systems to be computed on graphics hardware with
extremely high performance. In particular, we have
shown how to compress an unbounded IFS into the
unit square, so an approximation to the IFS attractor
can be stored in a texture. We have shown how ana-
lytic map inversion can be used per pixel to iteratively
improve this approximation. We have explored how
to use a map function’s Jacobian determinant to track
our discretized attractor density, and how to store that
density in a range-limited fixed point texture. Finally,
we showed how to use multigrid to accelerate the con-
vergence of our approach. Together, these techniques
allow a single GPU to interactively render nonlinear
IFS that previously could only be rendered offline on a
large distributed cluster.

There is much work remaining to do. Currently we
do not exploit frame-to-frame coherence, which could
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cut the number of rendering passes required, especially
on low-end machines. Multigrid has the advantage that
it allows arbitrary animations, including smash cuts
and strobe-type effects, but many animations do have
significant coherence.

We also currently perform no precomputation, and
compute the map functions using only arithmetic. More
complex nonlinear functions, or functions whose in-
verse can only be approximated numerically, would
benefit from a discretized version of the map inverse
relation, such as a “source coordinate texture” lookup
table. A lookup table could have various features folded
in, such as an attractor-dependent texture-to-plane func-
tion. In addition, Draves has now collected nearly a
hundred nonlinear variation functions, of which we only
analyzed the first twenty, so it would take significant
effort to find analytic inverses for the remaining func-
tions. Thus some simple procedure to approximate or
store inverse relations would be useful for backward
compatibility.

As with any finite approximation, our attractor tex-
ture occasionally displays sampling artifacts. In the
center of spirals, where attractor pixels are repeatedly
resampled using the hardware’s bilinear texture inter-
polation, the geometry can become somewhat blurred.
A resource-intensive solution is to increase the texture
resolution, but it seems likely that a higher-order tex-
ture interpolant, such as cubic sampling, could produce
better results.

Some attractors have important features stored far
away in the plane, where our texture resolution is low.
This effect is visible on asymptotic spikes, which be-
come blurry near the tips, especially at low texture res-
olutions. Some sort of intelligence added to the plane-
to-texture mapping should be able to reduce this effect.
For example, instead of a fixed uniform texture resolu-
tion, the attractor could be approximated using adap-
tive resolution texture tiles.

Our basic per-pixel algorithm generalizes almost
trivially to higher dimensions, and 3D GPU textures
consisting of voxels are well supported. However, un-
like the random iteration method, for our method the
storage and computational requirements of higher di-
mensions quickly become prohibitive; for example, a
20482 pixel color image takes only 16 megabytes of
storage, while a 20483 voxel color volume requires 34
gigabytes. However, even today’s graphics cards are
capable of comfortably volume-rendering 5123 voxel
volumes at interactive rates, so per-voxel 3D nonlinear
iterated function system rendering will eventually be-
come affordable, especially if using adaptive resolution
tiled 3D textures.

In this work we have only addressed plain IFS, the
simplest form of nonlinear recursive geometry. Yet
there are many other more complex procedural models,
including recurrent iterated function systems [28], su-
perfractals, escape-time fractals [4], and programmable

L-systems. It seems likely that a modified version of
the deterministic iteration algorithm could have excel-
lent GPU performance in rendering these other meth-
ods to represent fractal geometry. In particular, we
would like to explore varying the map functions at each
level, for example to mirror the growth cycle of plants.

Finally, we welcome the interested reader to down-
load,3 extend, and contribute to our open source imple-
mentation of this technique.
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Glossary of Symbols

RPd d-dimensional projective space; here d = 2.
[0, 1]c The space of c-channel colors; here c = 3.

I The space of all images. RPd
→ [0, 1]c

wi A geometric distortion function. RPd
→ RPd.

Jwi The d × d Jacobian matrix of wi.
Wi An image distortion function. I → I.
F The sum of the Wi. I → I.
A IFS attractor image, the fixed point of F. In I.
Ak The kth texture approximation of A.
T Plane-to-texture compression function.
P Texture-to-plane function, T−1.
M An affine transformation: a d + 1 × d + 1 matrix.

Appendix

Figure 14 shows a slightly reformatted version of
the per-pixel GLSL code generated to render Figure 1.
On the next page, Figure 15 shows the “fountains” IFS,
which has these maps.

w0(x, y)=
[

x
y

]
+

[
−2.0
0.0

]
w1(x, y)=polar

([
1 0.5
−1 0.5

] [
x
y

]
+

[
0.6
−3.0

])
w2(x, y)=1.8 ∗ spherical

([
−0.2 −0.4
0.4 −0.3

] [
x
y

]
+

[
−1.0
−1.3

])

The spherical and other nonlinear functions used
in our IFS maps are defined in Table 2. Figures 16
and 17 show other interesting nonlinear IFS. Figure 18
shows one of Draves’ “electric sheep” fractals, one of
the few interesting existing sheep that uses invertible
map functions. Each of these IFS animate beautifully,
an effect that simply cannot be conveyed in print.

varying vec2 destcoords; // destination location

uniform sampler2D src; // previous attractor

/*---- convert plane-to-texture -------*/

uniform float texscale,texscalei;

float T(float x) { // plane to texture

x*=texscale;

return x/sqrt(1.0+x*x)*0.5+0.5;

}

vec2 T(vec2 p) { return vec2(T(p.x),T(p.y)); }

float P(float s) { // texture to plane

float u=2.0*s-1.0;

return texscalei*u/sqrt(1.0-u*u);

}

vec2 P(vec2 s) { return vec2(P(s.x),P(s.y)); }

/*---------------- w0 -----------------*/

uniform vec4 color0;

uniform vec2 w0x,w0y,w0o; // w0’s parameters

uniform float w0j,w0v;

float jacobian0(vec2 t) {return 1;}

vec4 f0(vec2 inv) { // runs at each inverse

float area=1e-2+abs(w0j*jacobian0(inv));

vec2 t=T(w0x*inv.x+w0y*inv.y+w0o);

return (exp2(texture2D(src,t)*20)-1)/area;

}

vec4 nonlinear_inverse0(vec2 p) {

p=p*w0v; // Draves’ variation coefficient

return f0(p);

}

/*---------------- w1 -----------------*/

uniform vec4 color1;

uniform vec2 w1x,w1y,w1o; // w1’s parameters

uniform float w1j,w1v;

float jacobian1(vec2 t) {

float r2=dot(t,t);

return (1-2*t.y*t.y/r2)/r2;

}

vec4 f1(vec2 inv) { // runs at each inverse

float area=1e-2+abs(w1j*jacobian1(inv));

vec2 t=T(w1x*inv.x+w1y*inv.y+w1o);

return (exp2(texture2D(src,t)*20)-1)/area;

}

vec4 nonlinear_inverse1(vec2 p) {

p=p*w1v; // Draves’ variation coefficient

float ix = 0.5/p.x;

float det=1 - 4*p.x*p.x*p.y*p.y;

if (det>=0) {

float sq = sqrt(det);

return f1(vec2(ix*(1 - sq),p.y))

+f1(vec2(ix*(1 + sq),p.y));

} else { return vec4(0); }

}

/* Combined inverse-sampling function */

vec4 sum_inverses(vec2 p) {

vec4 sum=vec4(0);

sum+=color0*nonlinear_inverse0(p);

sum+=color1*nonlinear_inverse1(p);

return log2(sum+1)*(1.0/20);

}

void main(void) {

gl_FragColor = sum_inverses(P(destcoords));

}

Figure 14. GLSL source code generated to render the Figure 1
IFS using the per-pixel inversion method. An IFS with more or
different map functions will generate a different listing. Affine pa-
rameters are uniforms, to allow animation.
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Figure 15. A three-map “fountains” IFS. All these IFS are rendered on the GPU at interactive rates with the per-pixel method.

w0(x, y) = swirl
(
0.5 ∗

[
x
y

])
w1(x, y) = 0.5 ∗

[
x
y

]
+

[
1.3
0

]
w2(x, y) = 0.5 ∗

[
x
y

]
+

[
0.4
−1.3

]

Figure 16. The three-map “swirlpinski” IFS, the same one shown
in Figure 6. This is the only IFS in this paper whose attractor is
actually bounded–every other IFS we present extends to infinity
in at least one direction.

w0(x, y) =

[
0.8 −0.4
0.4 0.8

] [
x
y

]
+

[
−1
0.3

]
w1(x, y) = 0.5 ∗ fisheye(x, y)

w2(x, y) = 3.2 ∗ hyperbolic(x − y, x + y)

Figure 17. A three-map “eyes” IFS.

w0(x, y) = 1/3 ∗ spherical
(
0.5 ∗

[
x
y

]
+

[
−0.566

0.4

])
w1(x, y) = 1/3 ∗ spherical

(
0.5 ∗

[
x
y

]
+

[
+0.566

0.4

])
w2(x, y) = 1/3 ∗ spherical

(
0.5 ∗

[
x
y

]
+

[
0

−0.551

])

Figure 18. Draves’ fractal generation 165, sheep 48.
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