
MPIglut: Powerwall Programming Made Easier
Orion Sky Lawlor∗ Matthew Page† Jon Genetti‡

Department of Computer Science, University of Alaska Fairbanks

ABSTRACT
A powerwall is an array of separate screens that work
together to provide a single unified display. Powerwalls
are often driven by a small cluster, which requires paral-
lel software to organize and synchronize the distributed
rendering process. This paper describes MPIglut, our
powerwall-friendly implementation of the popular se-
quential GLUT OpenGL 3D programming interface.
MPIglut internally communicates using MPI to pro-
vide a single coherent display even across a distributed-
memory parallel machine. Uniquely, MPIglut is source-
code compatible with ordinary sequential GLUT code
while providing high performance.
Keywords: Powerwall, large display, GLUT, MPI,
OpenGL, API override.

1 INTRODUCTION
After decades of predictions, parallelism is finally arriv-
ing in mainstream computing. From instruction-level
parallelism in CPUs, to pixel-level parallelism in GPUs,
to today’s multiple CPU/multiple GPU machines (for
example, via multicore and SLI), parallelism at all lev-
els is ubiquitous today.

However, despite its increasing importance, writing
code for parallel machines is still difficult [Sut05]. One
approach we have pursued recently [Law06] that pre-
serves the millions of man-years invested in sequential
software is to build “parallelizing libraries,” reusable
pieces of parallel code that enable existing sequential
programs to operate correctly in parallel. Parallelizing
libraries cleanly encapsulate much of the complexity
of parallelization, leaving all application-domain com-
plexity to the existing sequential program.

In this paper we describe our open-source paralleliz-
ing graphics library called MPIglut. MPIglut is de-
signed to support the many existing sequential OpenGL

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the
first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Journal of WSCG 2008, ISBN 1213-6964
WSCG’2008, F29, 2008
Plzen, Czech Republic.
Copyright UNION Agency – Science Press

∗e-mail:olawlor@acm.org
†e-mail:ftmap2@uaf.edu
‡e-mail:genetti@cs.uaf.edu

Same program in parallel on a powerwall with MPIglut.

Sequential OpenGL/GLUT program running on a laptop.

Figure 1: MPIglut allows sequential OpenGL GLUT
applications to run efficiently in parallel on powerwall-
style tiled display clusters with distributed memory.

3D graphics applications that use the GLUT user inter-
face. As shown in Figure 1, MPIglut allows these ap-
plications to operate correctly on a distributed-memory
parallel cluster via a simple recompile. Our current
primary use for MPIglut is for display walls, or pow-
erwalls1 [Woo94] [Sch00], where a single application
drives a tiled array of physical display devices (such as
monitors or projectors) as a large virtual display sur-
face.

1 PowerWall (note capitalization) is a trademark of Fakespace Systems.

1.1 Prior Work
Many libraries already exist for adapting applications to
a tiled parallel display—see Staadt et al’s 2003 survey
[Sta03]. Table 1 summarizes some of this prior work
by the parallelism used in the geometry-generating ap-
plication and the geometry-rendering display.

Molnar et al [Mol94] provided a popular three-level
taxonomy of approaches to parallel rendering: sort-
first (send data before rasterization), sort-middle (send
data during rasterization), and sort-last (send data af-
ter rasterization). Because rasterization is not the only
noteworthy event in graphics programming, we find a
slightly more fine-grained taxonomy useful:

1. send-event: The user interacts with the program via
window system events. MPIglut and VR Juggler
broadcast these events across the network, and are
hence send-event systems. One advantage of this is
events are normally far smaller than any other stage
in the system.

2. send-database: The program responds to those win-
dow system events by traversing its scene database.
Several parallel scene graph libraries, described be-
low, are able to respond to changing viewpoints by
sending the appropriate parts of the scene database
across the network to their new displays.

3. send-geometry: The program generates renderable
geometry for the scene by making calls to the graph-
ics interface library. Chromium captures OpenGL
calls at this level with its own libGL; DMX captures
the GLX protocol stream generated by the stock X
OpenGL library. The captured geometry is then po-
tentially sent across the network to a different GPU
for rendering, such as via Chromium tilesort. This
is Molnar’s “sort-first” level.

4. send-groups: During rasterization setup, many ren-
derers decompose primitives into groups of pixels
such as scanlines. This “Scan Line Interleave” ap-
proach was used with multiple 3dfx graphics cards,
and is Molnar’s “sort-middle” level.

5. send-pixels: After rasterization, rendered pixels must
be delivered to the appropriate display and possi-
bly composited together. The common approach
is to divide the display surface into tiles and (pos-
sibly dynamically) assign a renderer to each tile.
ATI’s CrossFire, and IBM’s scalable graphics en-
gine [Pra05] network-attached-framebuffer work at
this level to composite rendered pixels. Chromium’s
readback component also provides support for this,
Molnar’s “sort-last” compositing.

The Chromium [Hum02] system, formerly WireGL
[Hum00], captures all OpenGL rendering calls sent
to its special OpenGL library. The captured OpenGL

calls can then be sent across the network to other pro-
cessors for rendering in a flexible way, so Chromium
can either distribute the calls coming from a single se-
quential application, or route the calls from pieces of
a parallel application to the appropriate parallel or se-
rial display. Because it uses binary call interception,
Chromium is compatible with most OpenGL binaries.
But because Chromium must intercept and forward all
OpenGL calls, it cannot help but heavily intrude upon
the rendering process. This makes the library difficult
to extend to follow the evolving OpenGL standard, and
also has performance implications. Finally, Chromium
does not provide much assistance with application-level
parallelization, although it does come with a GLUT-like
library called CRUT, and provides unrendered geome-
try and rendered pixel communication.

Distributed Multihead X (DMX) [Mar] is an X Win-
dow System server that splits up incoming graphical
user interface requests and forwards them to a list of
“backend” X servers. DMX is often used on power-
walls to allow ordinary unmodified sequential X appli-
cations to run on the parallel tiled display. DMX also
includes GLX Proxy, an implementation of X’s native
OpenGL network transmission protocol (GLX) which
broadcasts each GLX request to all machines for ren-
dering. Exactly like Chromium, GLX Proxy thus in-
trudes on every rendering operation, which can be slow
and makes it difficult to keep up to date as OpenGL
changes. DMX’s GLX Proxy is purely broadcast-based,
and does not do any of the intelligent geometry routing
performed by Chromium’s tilesort.

Like MPIglut, VR Juggler [Bie01] only handles event
reception and OpenGL setup, leaving OpenGL render-
ing largely to the user. VR Juggler works in CAVE sys-
tems, supporting 3D head trackers and displays at arbi-
trary 3D orientations. A similar library specifically for
SGI Performer hardware was pfCAVE [Pap97].

A number of libraries exist which provide a paral-
lel scene graph interface. OpenSG [Rei02] (which is
not related to OpenSceneGraph) provides a replicated
scene graph that can be modified and rendered by mul-
tiple threads or the distributed machines of a cluster. To
cite a few, Syzygy [Sch03], Aura [vdS02], OpenRM
Scene Graph [Bet03], and Coin3D [Sys] are among
the many feature-rich parallel scene graph libraries,
which often target tiled displays. But the main barrier
to adoption of all these libraries is that they are not,
and cannot be, anything like classical immediate-mode
OpenGL. This means existing 3D programs must be
almost totally rewritten to take advantage of their fea-
tures. MPIglut by contrast aims for source code com-
patibility. In the scene graphs’ defense, MPIglut im-
plicitly assumes the original program is capable of ren-
dering any portion of the scene at any time, so even un-
der MPIglut a parallel view-culling scene graph is still
quite useful for large models.

Single Display Multiple Displays
Serial Application Serial toolkits like Windows, X, GLUT, etc DMX [Mar]
Parallel Application ParaView, Tachyon MPI Raytracer [Sto98], etc MPIglut, VR Juggler [Bie01], Aura [vdS02]

Table 1: Classification of prior work by primary use. Chromium [Hum02] can be used for all four cases.

2 IMPLEMENTATION OF MPIGLUT
MPIglut implements a parallel version of the OpenGL
Utilities Toolkit (GLUT) standard [Kil96]. GLUT is
normally a sequential windowing and GUI event han-
dling interface called by sequential programs. MPIglut
parallelizes GLUT programs by running a separate copy
of the user’s sequential code on each of a set of MPIglut
rendering processes called “backends”. Each backend
is responsible for rendering a small part of the overall
display, although MPIglut provides the user’s sequen-
tial code the appearance that it is rendering to the entire
display.

MPIglut is built on top of a sequential GLUT im-
plementation, which handles user input at the front
end and the render system interfacing at the back end.
We currently use a patched version of freeglut[Ols07]
2.4.0, since MPIglut requires one small modification
to the underlying GLUT in order to work well with
DMX (MPIglut forces its backend windows to be X
children of the DMX backend window, which prevents
window-stacking order and event routing problems).
Also, MPIglut intercepts a few GLUT and OpenGL
calls for special handling:

• MPIglut’s glutInit on a backend calls MPI_Init, sets
up MPIglut’s internal state, and calls the underly-
ing glutInit. On the frontend, glutInit spawns the
appropriate number of backends (using mpirun) and
forwards user events to those backends.

• MPIglut’s glutCreateWindow (and other window ma-
nipulation calls, such as glutReshapeWindow) for-
wards the request to the frontend, which adjusts its
window and correspondingly reorganizes the back-
ends.

• MPIglut’s glutMouseFunc (and all other user event
handling functions) calls the user’s callbacks based
only on events broadcast from the frontend.

• MPIglut’s glutGetModifiers returns the frontend’s
keyboard state as of the last event broadcast.

• MPIglut’s glViewport command internally asks for
an OpenGL viewport covering only our backend’s
screen region. This avoids the OpenGL implementa-
tion’s GL_MAX_VIEWPORT_DIMS limit, which
is often as low as 4096 pixels—less than half the
display width of our 8400x4200 pixel powerwall!

• MPIglut’s glLoadIdentity (and the other matrix load
functions) pre-loads this backend’s subwindow ma-
trix, as described in Section 2.3.

• MPIglut’s glutSwapBuffers synchronizes all displays
(using a glFinish and MPI_Barrier). This avoids
tearing and lag effects as slower or more heavily-
loaded backends fall behind faster ones.

MPIglut’s call interception scheme currently uses the
preprocessor. For example, inside our MPIglut public
header file, we intercept glLoadIdentity calls with the
simple C/C++ preprocessor macro “#define glLoadI-
dentity mpiglLoadIdentity”. For full binary compatibil-
ity, it would be straightforward to implement a shared-
library technique such as LD_PRELOAD or even con-
struct an entirely new replacement library, similar to
Chromium [Hum02]. But for mere source-code com-
patibility the preprocessor is very small and simple.

2.1 Parallel Programming with MPI
Underneath, MPIglut uses the parallel Message Pass-
ing Interface (MPI) standard [MPI94] to synchronize
and communicate GUI events between the backend pro-
cesses. We currently use MPICH 1.2.7 [Gro96] as our
MPI implementation, although any implementation of
MPI should work. MPIglut programs are not required
to make any MPI calls themselves, but are free to call
MPI functions if needed, for example to accomplish
some application-specific communication not provided
by MPIglut.

Several of the best aspects of MPIglut are taken di-
rectly from MPI. Unlike with threaded multiprogram-
ming, MPI and MPIglut run a completely separate copy
of the main() program in each of the parallel back-
end processes. This avoids many of the race con-
ditions common with threaded parallel programming,
avoids slow and error-prone locking, and allows the en-
tirely safe use of global or static variables by MPI and
MPIglut programs.

One obvious major drawback of non-shared memory
parallel programming is the potential for duplication
of large shared data structures. However, if the larger
shared structures are memory-mapped in from files, the
OS kernel will safely point all local processes’ pageta-
bles at one copy of this common data, and so multiple
processes can be made memory-use-competitive with
multithreaded programming even on shared-memory
hardware.

Mouse

MPIglut Frontend

MPIglut0 MPIglut1 ...

...App1App0

DMX Server

(MPIglut)

Mouse

X Server

Application

GLUT

(GLUT)

Figure 2: Sequential GLUT normally receives events
from the X server and forwards them to the applica-
tion’s event handler callbacks. MPIglut receives events
at the frontend and broadcasts them out to all the back-
ends. Broadcast events are then delivered to the appli-
cation’s event handler callbacks collectively.

2.2 Event Delivery
As shown in Figure 2, MPIglut receives user input
events such as keystrokes and mouse motion using a
single placeholder “frontend” process. This frontend
process then sends the incoming events over a TCP
socket to one backend process, where the events are
broadcast via MPI to all the backends.

The semantics of some calls in MPI and MPIglut
are “collective”, meaning they must always happen in
the same order on every backend process. In MPIglut,
event reception and delivery is collective, so every back-
end is guaranteed to receive the same user input events
in the exact same order. Collective calls usually al-
low the programmer of an MPIglut (or MPI) process
to safely ignore the confusing unsynchronized execu-
tion common to parallel programming, and think of the
processes as executing together in lock-step.

Applications must ensure they retain this collective
property when they make GLUT windowing and over-
all rendering control calls such as glutSwapBuffers.
Deterministic applications automatically remain collec-
tive. Applications that determine window state based
on a nondeterministic function of their (identical) input
data, (identical) command-line arguments, and (identi-
cal) user events would require additional synchroniza-
tion to work properly under MPIglut. For example, ad-
ditional code would be needed to synchronize applica-
tions based on a non-shared clock, or that already ren-
der data from the network. However, no OpenGL ren-
dering commands (such as glDrawLists) are collective
or intercepted by MPIglut, so all are safe to call in any
order and all run at full speed.

2.3 MPIglut Coordinate Systems
MPIglut currently fetches both input events and screen
geometry from the frontend’s DMX window, although
it would be trivial to have MPIglut fetch this informa-
tion from some other program or a configuration file.

Most events in MPIglut are delivered collectively to
the user code in global coordinates, the coordinates
of the DMX display running across the collective vir-
tual display screen. Because global coordinates are the
same everywhere, user code never needs to translate co-
ordinates due to MPIglut.

Window Coordinates

Global Coordinates

Local

Sublocal Subwindow

Figure 3: Coordinate systems used inside MPIglut.

But as shown in Figure 3, internal to MPIglut there
are no fewer than five separate coordinate systems that
must stay properly interrelated.

• Global coordinates are coordinates on the entire col-
lective virtual screen. Global coordinates (0,0) are
the top-left corner of the whole powerwall. These
coordinates are used by DMX and the user code to
specify window positions.

• Local coordinates are the coordinates of the local
machine’s directly-attached screen. Local coordi-
nates (0,0) are the top-left corner of this MPI pro-
cess’s attached physical display. These are used in-
ternal to MPIglut backends to position windows on
the local screen.

• Sublocal coordinates mark our backend process’s
portion of its own directly-attached screen. Sublocal
coordinates (0,0) are the start of the portion of screen
space this process is responsible for drawing. They
are different from local coordinates because we may
wish to have more processes than screens, for exam-
ple on a multi-core machine.

• (Global) Window coordinates are measured on the
frontend’s virtual window. Window coordinates (0,0)
are the top-left corner of the collective frontend win-
dow. All mouse events are reported by DMX and to
the user code in these global window coordinates.
OpenGL viewports are requested by the user code
in window coordinates.

• Subwindow coordinates are the part of the window
our local backend is responsible for drawing. Sub-
window coordinates (0,0) are the topleft corner of
where we actually must draw. OpenGL rendering
actually happens in subwindow coordinates.

In the simplest case of one process drawing to a sin-
gle fullscreen window, all five coordinate systems are
identical! In any powerwall, global and local coordi-
nates are different, but local and sublocal coordinates
may still be identical. Sublocal coordinates are also
useful for separating the images being delivered to two
separate displays from a dual-output graphics card with
a single contiguous framebuffer.

During rendering, the main task of MPIglut is sim-
ply to convert the global window coordinates used by
the sequential user code (which knows nothing of the
separate powerwall screens) into subwindow coordi-
nates as used by the local graphics card to drive a
portion of the display. For rendering, this coordinate
shift should happen after the perspective divide, but
before vertex clipping. In OpenGL, we simply need
to fill the GL_PROJECTION matrix with the window-
coordinates-to-subwindow-coordinates matrix—called
the “subwindow matrix”—before any other matrix op-
erations.

Because the MPIglut implementation of glLoadIden-
tity premultiplies the subwindow matrix into the pro-
jection matrix,2 then any code that reads back this ma-
trix (for example, via a glGetFloatv call) will instead
receive the projection-to-subwindow matrix. This is a
feature, not a bug! It means applications that construct
clipping planes from the projection matrix will actually
automatically cull away geometry they are not responsi-
ble for drawing locally. In other words, under MPIglut
often well-written sequential OpenGL programs will
not replicate every drawing call across the entire pow-
erwall, but instead only load and draw the geometry
visible on their own local piece of the overall display.
The soar application we used for benchmarking gener-
ates only the geometry needed on each backend in this
intelligent fashion, and a web search for "glGetFloatv
culling" finds hundreds of similar applications.

3 PERFORMANCE RESULTS
We benchmarked MPIglut’s performance against both
Chromium3 and DMX4 on our 20-screen powerwall,
shown in Figure 4, which consists of ten nodes5 con-
nected with switched gigabit ethernet. The aggregate
resolution of the 5x4 array of 20 screens is 8400x4200
pixels, not counting the 150-pixel gap between screens,
which once accounted for increase the overall display
dimensions to 9000x4650 pixels.

2 The premultiplication of course only happens in GL_PROJECTION
mode.

3 Chromium 1.8, using DMX tilesort client and crserver render SPUs.
4 Xorg DMX 7.1.1 version of DMX, running with glxProxy.
5 Software: 32-bit Linux 2.6.15, nVidia 87.62 drivers, gcc 4.04, and

MPICH 1.2.7. Hardware: dual-core Intel Core2 Duo 6300 CPU, 2GB
RAM, and one nVidia QuadroFX 3450 or 1450 PCI Express graphics
card connected to two 1680x1050 DVI LCD monitors.

Figure 4: The UAF CS Bioinformatics powerwall, run-
ning the soar terrain renderer used for benchmarking.

mandelbasic

tex, tex_obj vtx, vtx_obj

Figure 5: Output of six of our seven benchmark pro-
grams (the bottom row images represent two bench-
marks each). The soar benchmark is shown in Figure 4.

To show different performance aspects, we present
results from seven small GLUT programs as shown in
Figures 4 and 5, and described in detail below. Each
of these programs began as an ordinary serial GLUT
program, but ran without problems in parallel using
MPIglut. Figure 6 and Table 2 show framerates for each
program.

Parallel programmers will notice that powerwall ren-
dering is naturally a "scaled problem"—because we
add screens, CPUs, and GPUs at the same rate, with
zero communication or synchronization cost our fram-
erate would remain constant regardless of the machine’s

 1

 10

 100

 1000

 1 10

D
el

iv
er

ed
 P

er
fo

rm
an

ce
 (

fp
s)

Number of Screens and CPUs (MPIglut)

basic
tex_obj
vtx_obj

tex
vtx

soar
mandel

 1

 10

 100

 1000

 1 10

D
el

iv
er

ed
 P

er
fo

rm
an

ce
 (

fp
s)

Number of Screens and CPUs (Chromium)

basic
tex_obj
vtx_obj

tex
vtx

soar

 1

 10

 100

 1000

 1 10

D
el

iv
er

ed
 P

er
fo

rm
an

ce
 (

fp
s)

Number of Screens and CPUs (DMX)

basic
tex_obj

tex
vtx

soar

Figure 6: Framerate as a function of machine size for all
our benchmarks, running under MPIglut, Chromium,
and DMX. Machine sizes: 1, 2, 4, 6, 8, 10, 12, 16,
and 20 screens and CPUs. Framerates below 10fps are
unusable (log-log scale).

size (or "scale"). Hence a communication solution that
"scales" will have near-constant framerates as a func-
tion of machine size. Communication costs show up as
a fall-off in framerate as the machine scales up.

• basic draws one fullscreen quad of a fixed color per
frame. This was intended as a baseline to test frame
synchronization cost. Both MPIglut and Chromium
sustain hundreds of frames per second out to the full
20 CPUs, but DMX scales poorly even for this sim-
ple program, ending up just below 40fps.

MPIglut Chromium DMX
basic 282.5 232.6 40.1
tex_obj 279.3 217.9 39.4
vtx_obj 36.1 35.0 fail
tex 80.3 2.6 2.8
vtx 57.5 0.7 0.4
soar 27.1 1.4 1.4
mandel 19.9 fail fail

Table 2: Framerates (frames/second) of our seven
benchmark GLUT programs running under MPIglut,
Chromium, and DMX on 20 screens and CPUs.

• tex_obj draws one fullscreen quad using a 1024x1024
texture loaded from an OpenGL texture object. All
three systems were able to locally cache the texture,
so the performance of this test was similar to the ba-
sic test.

• vtx_obj draws a 2-million triangle mesh from an
OpenGL vertex buffer object (loaded with a us-
age of GL_STATIC_DRAW_ARB). Again, MPIglut
and Chromium were able to locally cache the mesh
object, and hence maintained good performance.
DMX does not support the 2003 ARB_vertex_buffer
_object OpenGL extension, and so could not execute
this program.

• tex draws one fullscreen textured quad exactly like
tex_obj, but reloads the 1024x1024 texture’s data
from the CPU every frame using glTexSubImage2D.
This is intended to mirror a high-definition movie
player using software decoding, or other live exter-
nal data display. MPIglut uses the parallel CPUs
to load all the textures in parallel, and hence scales
perfectly. Chromium and DMX must broadcast the
updated texture over the network every frame, and
scale terribly as expected.

• vtx draws a 320-thousand triangle mesh using an
OpenGL vertex array rendered with glDrawElements.
Unlike vtx_obj, vertex arrays cannot be stored in
the GPU, and must be copied from the CPU every
frame. As with tex, under MPIglut each node uses
its local copy of the data and hence the vertex up-
load scales well, while Chromium and DMX must
send all the vertex data via the network every frame
and hence do not scale.

• soar is Peter Lindstrom et al’s SOAR v1.11 ter-
rain renderer [Lin02] using a flight path through
the 4096x4096 Puget Sound terrain model, which
is read from a .geo file on disk. This renderer is
CPU-intensive and generally geometry-rate limited,
generating and drawing approximately 50,000 poly-
gons per screen per frame. Under MPIglut SOAR
scaled fairly well, running at over 27fps even on the

entire machine. But because both Chromium and
DMX use a single sequential program to generate all
geometry on node 0, they both quickly became net-
work bound, and gave terrible performance on the
full machine–under 1.5fps!

• mandel interactively renders the famous Mandel-
brot set fractal using an OpenGL GLSL fragment
program, using the recently added hardware pixel
shader loop and branch support. Because rendering
pixels in different regions of the Mandelbrot set re-
quires dramatically differing numbers of iterations,
this program’s parallel speed under MPIglut varies
substantially due to load imbalance between the dif-
ferent backends, but is still acceptable. Chromium
and DMX do not yet support programmable shaders,
and hence neither one could execute this program.

In general we have found that MPIglut scales well for
the applications and machines we have tested, provid-
ing usable framerates even for difficult applications on
the full machine. Similarly, Chromium scales well for
some applications, specifically those where the geome-
try and texture data is either simple or locally cached.
But Chromium and DMX both become network-limited
for other applications, since they must often send geom-
etry and texture data across the network. We observed
Chromium and DMX both saturate gigabit ethernet, of-
ten sending over 100 MB/s of geometry and texture data
over the network from node 0, sometimes even in a ma-
chine configuration with only two nodes!

We measured per-frame network overhead with the
trivial basic benchmark. On 20 screens, MPIglut ran
this program at approximately 300fps (3.28ms/frame),
and each machine sent a few kilobytes of data across
the network per frame (0.79MB/s maximum total net-
work usage). 82% of each frame time was spent waiting
for the GPU to render pixels; 8% (about 300 microsec-
onds per frame) was spent in the MPIglut MPI_Barrier
software framesync; and another 8% in MPIglut’s event
broadcast and delivery. The remaining time, less than
2%, was spent by the CPU actually issuing OpenGL
commands. MPIglut’s total overhead on 20 screens
is thus about half a millisecond per frame, which at a
more reasonable framerate amortizes out to a few per-
cent communication overhead (for example, at 30fps,
MPIglut takes about 1.5% of the runtime). Chromium
had similarly low per-frame overhead, although we oc-
casionally got anomalously high performance in the
>200fps region, which may be caused by dropped frames.
DMX on 20 screens appears to become network latency
limited to 40fps (25ms/frame), despite the low network
data rate (under 250KB/s) and CPU and GPU utiliza-
tion (both under 8% utilized).

We have not evaluated the performance of MPIglut
compared to the many quality parallel scene-graph li-
braries such as VR Juggler [Bie01], though assuming

those libraries also use only a small fraction of their
time communicating then we expect our overall perfor-
mance would be comparable. But the reason we have
not done this comparison is telling–porting a GLUT ap-
plication to a non-GLUT library would mean rewriting
all the event handling and rendering setup code, which
for many real applications is rather painful.

4 CONCLUSIONS & FUTURE WORK
We have presented MPIglut, a minimally invasive li-
brary to help sequential GLUT programs run on par-
allel powerwalls. We have surveyed the architecture
of MPIglut, and compared its performance to similar
existing libraries. The implementation of MPIglut is
small, consisting of one C/C++ header and one two
thousand line C implementation file, small enough to
be statically linked. MPIglut is still being developed,
and we plan to try several promising improvements.

Although currently designed for powerwalls, MPIglut
could be used with a single display to more easily take
advantage of multi-CPU or multi-GPU parallelism. A
single display could be divided into dozens of small
strips or tiles, with each region of the screen rendered
by a separate local MPIglut MPI process.

When developing complicated applications, MPIglut
would be a natural place to add load balancing sup-
port, to ensure that each node shares in both applica-
tion and rendering work. Within each shared-memory
screen, static load balance could easily be improved by
“overdecomposition”: creating many more MPI ranks
than physical CPUs, and allowing the OS to schedule
the tiles as needed. With standard MPI it is difficult to
implement more dynamic forms of load balancing, but
a migratable MPI like AMPI [Hua03] could help.

MPIglut could be extended to perform edge blending
and color balance correction inside glutSwapBuffers at
the end of each frame, which MPIglut already inter-
cepts to provide frame synchronization. One could even
resample the finished framebuffer to compensate for ge-
ometric nonlinearities in the screen, such as a curved
display wall. MPIglut could also be made to work on
entirely non-planar displays such as projector domes,
although this would likely not be compatible with nor-
mal OpenGL projection matrices which assume a flat
2D display.

At the moment, MPIglut does not intercept frame-
buffer readback routines such as glReadPixels or glCopy-
TexSubImage2D, so these currently read back only lo-
cal pixels. For some uses of these functions, such as
rendering small or screen-local environment or reflec-
tion maps, this provides correct answers. But for other
uses of these routines, such as taking screenshots or
picking, this gives an incomplete set of pixels. The best
solution would probably be to provide optional collec-
tive versions of these routines, like mpiglReadPixels.

This support would enable GPGPU applications to be
used more easily under MPIglut.

Finally, the idea behind MPIglut is by no means lim-
ited to either MPI or GLUT. The source-compatible
divide-up-the-screen parallelizing library approach could
equally easily be applied to arbitrary graphics toolkits
including Microsoft’s DirectX or portable GUI libraries
such as GTK or Qt, as well as arbitrary communication
schemes including threads and bare sockets. We feel
parallelizing libraries offer a simple path towards high
performance with the increasingly prevalent multi-core
and multi-GPU machines.

Readers may download [MPI07] and try MPIglut!

REFERENCES
[Bet03] E. Wes Bethel, Greg Humphreys, Brian Paul, and

J. Dean Brederson. Sort-first, distributed memory
parallel visualization and rendering. In
Proceedings of IEEE Symposium on Parallel and
Large Data Visualization and Graphics, 2003.

[Bie01] Allen Bierbaum, Christopher Just, Patrick
Hartling, K. Meinert, A. Baker, and Carolina
Cruz-Neira. VR Juggler: A virtual platform for
virtual reality application development. In IEEE
Virtual Reality, pages 89–96, 2001.

[Gro96] W. Gropp, E. Lusk, N. Doss, and A. Skjellum.
Mpich: A high-performance, portable
implementation of the mpi message passing
interface standard. Parallel Computing,
22(6):789–828, September 1996.

[Hua03] Chao Huang, Orion Lawlor, and L. V. Kalé.
Adaptive MPI. In Proceedings of the 16th
International Workshop on Languages and
Compilers for Parallel Computing (LCPC 03),
pages 306–322, College Station, Texas, October
2003.

[Hum00] Greg Humphreys, Ian Buck, Matthew Eldridge,
and Pat Hanrahan. Distributed rendering for
scalable displays. In IEEE Supercomputing, pages
60–60, 2000.

[Hum02] G. Humphreys, M. Houston, Y. Ng, R. Frank,
S. Ahern, P. Kirchner, and J. Klosowski.
Chromium: A stream processing framework for
interactive graphics on clusters. In SIGGRAPH
Proceedings, pages 693–702, 2002.

[Kil96] Mark J. Kilgard. The opengl utility toolkit (glut)
programming interface: Api version 3, 1996.
http://www.opengl.org/documentation/specs/glut/.

[Law06] Orion Sky Lawlor, Sayantan Chakravorty, Terry L.
Wilmarth, Nilesh Choudhury, Isaac Dooley,
Gengbin Zheng, and Laxmikant V. Kale. ParFUM:
A parallel framework for unstructured meshes for
scalable dynamic physics applications.
Engineering With Computers, 22(3):215–235,
2006.

[Lin02] Peter Lindstrom and Valerio Pascucci. Terrain
simplification simplified. IEEE Viz. and Graphics,
8(3):239–254, 2002.

[Mar] Kevin E. Martin, David H. Dawes, and Rickard E.
Faith. Distributed Multihead X (DMX).
http://dmx.sourceforge.net/.

[Mol94] Steve Molnar, Michael Cox, David Ellsworth, and
Henry Fuchs. A sorting classification of parallel
rendering. In IEEE Computer Graphics and
Applications, volume 14-4, pages 23–32, July
1994.

[MPI94] Message Passing Interface Forum. MPI: A
Message-Passing Interface Standard, May 1994.

[MPI07] MPIglut authors. MPIglut Project Page, 2007.
http://www.cs.uaf.edu/sw/mpiglut/.

[Ols07] Pawel W. Olszta, Andreas Umbach, and Steve
Baker. freeglut, 2007.
http://freeglut.sourceforge.net/.

[Pap97] Dave Pape. pfCAVE CAVE/Performer Library
(CAVELib 2.6), 1997.
http://www.evl.uic.edu/pape/CAVE/prog/.

[Pra05] Prabhat and Samuel G. Fulcomer. Experiences in
driving a cave with IBM Scalable Graphics
Engine-3 (SGE-3) prototypes. In VRST ’05:
Proceedings of the ACM symposium on Virtual
reality software and technology, pages 231–234,
New York, NY, USA, 2005. ACM Press.

[Rei02] D. Reiners, G. Voss, and J. Behr. OpenSG: Basic
concepts. In First OpenSG Symposium, 2002.

[Sch00] Daniel R. Schikore, Richard A. Fischer, Randall
Frank, Ross Gaunt, John Hobson, and Brad
Whitlock. High-resolution multiprojector display
walls. IEEE Comput. Graph. Appl., 20(4):38–44,
2000.

[Sch03] B. Schaeffer and C. Goudeseune. Syzygy: Native
PC Cluster VR. In IEEE Virtual Reality, 2003.

[Sta03] O. Staadt, J. Walker, C. Nuber, and B. Hamann. A
survey and performance analysis of software
platforms for interactive cluster-based multi-screen
rendering. In Proceedings of the Workshop on
Virtual Environments, 2003.

[Sto98] John Stone. An efficient library for parallel ray
tracing and animation. Master’s thesis, Dept. of
Computer Science, University of Missouri Rolla,
1998. http://jedi.ks.uiuc.edu/˜johns/.

[Sut05] H. Sutter and J. Larus. Software and the
concurrency revolution. ACM Queue, 3(7):54–62,
2005.

[Sys] Systems In Motion. Coin3d library.
http://www.coin3d.org/.

[vdS02] T. van der Schaaf, L. Renambot, D. Germans,
H. Spoelder, and H. Bal. Retained mode parallel
rendering for scalable tiled displays. In Immersive
Projection Technologies Symposium, 2002.

[Woo94] Paul Woodward and U. Minnesota PowerWall
Team. Powerwall, 1994.
http://www.lcse.umn.edu/research/powerwall/.

