
Debugging Support for Charm++

Rashmi Jyothi, Orion Sky Lawlor, L. V. Kalé
Department of Computer Science

University of Illinois at Urbana-Champaign
jyothi@uiuc.edu, olawlor@acm.org, kale@cs.uiuc.edu

Abstract

This paper describes a parallel debugger and the related
debugging support implemented forCHARM++, a data-
driven parallel programming language. Because we build
extensive debugging support into the parallel runtime sys-
tem, applications can be debugged at a very high level.

1 Introduction

Parallel programming is more complicated than serial
programming because of concurrency, nondeterminacy, and
the sheer complexity of modern parallel programs. Debug-
ging tools can help programmers by untangling concurrent
execution, controlling nondeterminate messaging, and ex-
amining the dynamic state information of the parallel pro-
gram. [3, 11, 12]

We believe the parallel runtime system is in a unique
position to extract useful debugging and program analysis
information. Because the runtime system manages all com-
munication and directs control flow, it can present this in-
formation in a more useful form than a low-level sequential
debugger such asgdb.

In this paper, we present a selection of parallel debug-
ging techniques that overcome the shortcomings of exist-
ing sequential debugging schemes with a parallel program.
Our goal is to provide an integrated debugging environment
which allows the programmer to examine and understand
the changing state of the parallel program during the course
of its execution. As such, we present little brand new work
here; but instead present an integrated, orthogonal environ-
ment in which these well-known techniques can be put into
practice.

1.1 Prior work

The single most well-used debugging method, especially
in the primitive runtime environments common to paral-

lel machines, is the insertion of write statements into the
code to log specific variables and important events. This
method’s popularity comes from its simplicity, and the fact
that it requires no additional software or training. Nev-
ertheless, the programmer must decide in advance which
variables to print and where to insert the output statements,
and adding new output statements translates to editing and
compiling the program over again. Finding the one piece
of critical information hidden in a large output log can be
painfully frustrating. Logging in parallel is even more diffi-
cult, because network and buffering delays can reorder log
statements, resulting in bizarre logs where effects some-
times precede their causes.

Traditional sequential debuggers can deal quite well with
a single flow of control using the usual array of step com-
mands, breakpoints, and data structure displays. Sequential
debuggers, and sequential debugging tools, are still helpful
in debugging the individual processes in a parallel program;
but their single-process view of the program ignores con-
current accesses, so debugging message passing or concur-
rency related bugs is quite difficult.

There are a huge number of research parallel debuggers
of varying quality, and a small smattering of commercial
debuggers, of which TotalView is a well known example.
Hooks for TotalView are available to directly examine the
message queues of many MPI implementations[2]; but lit-
tle additional runtime support is available for this debugger.
In addition, the price of the debugger, being nonzero, is be-
yond the software budget for many small clusters.

Finally, CHARM++ already had a parallel debugger[15],
but due to various shortcomings we will describe, the de-
bugger was difficult to use on real applications.

2 Charm++

CHARM++[10, 8, 9] is an object oriented parallel pro-
gramming language based on C++. CHARM++ is built on
Converse [7], a message-passing layer that supports multi-
lingual interoperability. CHARM++ supports a variety of



distributed and shared memory machines, and directly sup-
ports Linux or Windows clusters of PCs connected using
Ethernet or Myrinet, Alpha servers using Quadrics inter-
connects, SGI shared-memory machines, the Cray T3E, or
any machine using MPI or pthreads.

The execution model of CHARM++ is message-driven
[4] wherein Converse treats the parallel machine as a col-
lection of nodes that communicate primarily via messages.
Each node is comprised of a number of processors that
share memory. When a message arrives at a processor it
triggers the execution of a handler function as specified by
the message[14]. The message is a contiguous sequence
of bytes and has two parts - the header and the data. The
header contains a handler number which specifies which
handler function is to be executed when the message ar-
rives. Converse maintains a table mapping handler numbers
to function pointers. Each processor has its own copy of the
mapping.

Communication primitives send messages to the sched-
uler queues of remote processors, where the scheduler
thread finds them and processes them. The Converse sched-
uler serves not only as a message receiver but also as a cen-
tral allocator of CPU time. Both locally generated as well
as messages from the network contend for scheduling time
in the same way.

The parallel programming model of CHARM++ is based
on the concept of processor virtualization [6], where the
programmer divides the work into a large number of pieces
called virtual processors or parallel objects, and lets the run-
time system map these pieces to processors. Communi-
cation between pieces is based on virtual addresses man-
aged by the runtime system [10], so the system can mi-
grate pieces of the computation between processors without
changing the way the pieces communicate, and hence with-
out changing the programmer’s view of the computation.
The number of pieces a computation is broken into is typ-
ically independent of, and normally much larger than, the
number of processors. The pieces of the computation are
implemented by the programmer as parallel objects, which
in CHARM++ are regular C++ objects. As regular C++ ob-
jects, CHARM++ parallel objects can contain public and pri-
vate data and methods as usual.

A machine-generated “proxy” C++ object is used to in-
voke methods on these parallel objects from other proces-
sors. As with Smalltalk, we use the term “send an object
a message” to refer to remote object method invocation
via this proxy object. In accord with the message-driven
execution model of CHARM++ all computations are initi-
ated in response to messages being received. Method calls
in CHARM++ are non-blocking—they are asynchronous
method invocations [13], so the caller does not wait for the
method to be executed or return a value. Because these re-
mote methods can be called from “outside”, they are called

entry methodsor entry points.
In CHARM++ parallel objects are normally stored in an

Array [10]. An Array is a collection of parallel objects
keyed by an “array index”. The size of the array is not fixed,
and not constrained in any way by the features of the under-
lying parallel machine such as the number of processors or
nodes. Each array element of an array has a globally unique
index, and messages are addressed to that index. Most of
the data in CHARM++ programs is stored in array elements.

2.1 Existing debugging support

Syncprint

The simplest debugging support provided by CHARM++
is an ordered parallel logging facility, enabled by the
command-line parameter “+syncprint”. This forces causal-
ity by making output statements usingprintf block the call-
ing object until the output is queued at a central location.
This global ordering slows down output, but ensures no out-
of-order debugging statements.

Standalone mode

Another simple feature is the ability to run a parallel pro-
gram serially, in a single process. This “stand-alone” mode
allows programmers to debug Charm++ programs on their
local workstation using their favorite serial debugger, such
as the graphical debugger included with Microsoft’s Visual
C++. Because of the virtualization aspect of CHARM++,
programs on a single processor are not limited to using a
single object or flow of control, so this trivial feature can be
used for real programs and has allowed us to catch a num-
ber of bugs. There is no true concurrency with this method,
however, as CHARM++ switches between in-process flows
of control in a cooperative fashion.

Multiple sequential debuggers

We begin to track down concurrent bugs by spawning sepa-
rate sequential debugger, such asgdbor dbxon each process
of a parallel job using the command-line run-time option
“++debug”. Each debugger runs in a separate window, and
shows the terminal output of its parallel process. Because
of all the separate windows, this method becomes unusable
for more than a few dozen processors.

Record and replay

Bugs due to message ordering can be extremely difficult
to track down, because message ordering on many paral-
lel machines is nondeterministic [16, 1]. CHARM++ pro-
vides a “record and replay” mechanism that allows a user
to record and later reproduce a program’s order of message

2



arrivals, which can help catch message ordering bugs. The
key idea here is to tag messages at the sender, and record the
message execution order to a file using the sender-generated
tags. CHARM++ tags messages using the sending processor
and an “outgoing message count” sequence number. This
means the same message executions can be replayed by pro-
cessing incoming messages in file order, as long as senders
tag their messages the same way on re-execution. Because
CHARM++ scheduling is deterministic and non-preemptive,
the only nondeterminism in CHARM++ programs comes
from message arrival order. Thus we only need to ensure
senders also process incoming messages in file order to en-
sure the entire program repeats itself exactly.

To enable the required tracing for record and replay, a
CHARM++ program is linked with the option “-tracemode
recordreplay” and run with the “+record” option, which
records message orders in a file for each processor. The
same execution order can be replayed using the “+replay”
runtime option; which can be used at the same time as the
other debugging tools in CHARM++.

3 Integrated debugging system

We have created a new debugging system with a number
of useful features for CHARM++ programmers. The sys-
tem includes a Java GUI client program which runs on the
programmer’s desktop, and a CHARM++ parallel program
which acts as a server. The client and server need not be
on the same machine, and communicate over the network
using a secure protocol described in Section 4.2.

The system provides the following new features.

• Provides a means to easily access and view the ma-
jor programmer visible entities, including array ele-
ments and messages in queues[15], across the parallel
machine during program execution. Objects and mes-
sages are extracted using the CHARM++ PUP frame-
work described in Section 4.1.

• Provides an interface to set and remove breakpoints
on remote entry points[13], which capture the major
programmer-visible control flows in a CHARM++ pro-
gram.

• Provides the ability to freeze and unfreeze the ex-
ecution of selected processors of the parallel pro-
gram, which allows a consistent snapshot by prevent-
ing things from changing as they are examined.

• Provides a way to attach a sequential debugger to a
specific subset of processes of the parallel program
during execution, which keeps a manageable number
of sequential debugger windows open.

Figure 1. Using the menu to set parameters
for the CHARM++ program being debugged

The debugging client provides these features via exten-
sive support built into the CHARM++ runtime. The parallel
runtime is in a unique position to provide this debugging in-
formation, as it is much closer to the application level than
the machine binary used by sequential debuggers.

3.1 Example usage

The CHARM++ programmer starts the debugger client
from the command-line specifying the program to be de-
bugged, its parameters and the number of processor ele-
ments it should run on as command-line parameters. Alter-
natively, the program and the parameters could be set via a
menu item provided by the debugger GUI. The menu usage
is shown in Figure 1.

Once the debugger client’s GUI loads, the programmer
triggers the program execution by clicking theStartbutton.
The program begins in a frozen state, displaying the “user”
and “system” entry points as a list of check boxes. “Sys-
tem” entry points belong to libraries and CHARM++ code,
while “user” entry points are defined in the application pro-
gram being debugged. The programmer sets and removes
breakpoints by checking and unchecking the checkboxes
corresponding to the entry points, then begins execution by
clicking theContinueButton. The program freezes when
a breakpoint is reached. Figure 2 shows a snapshot of the
debugger when a breakpoint is reached.

The server runtime inserts a breakpoint by changing the
CHARM++ entry handler table, a table of function point-
ers that normally directly jump to application entry method
code. By overwriting the entry method’s function table en-
try with a jump to debugging code, the next message which
attempts to execute that method will instead jump directly

3



Figure 2. Parallel debugger when a break
point is reached

to the debugging runtime. This is a much more efficient
implementation than our previous version[15], which kept
a list of breakpoints to check against each incoming mes-
sage. In fact, the new version imposes zero overhead if not
used, so it can be permanently enabled rather than requiring
a special debug build.

Clicking theFreezebutton stops the selected processors
before the start of their next message, and drains their net-
work queues. TheContinuebutton resumes execution. The
Quit button exits the debugged program.

Entities (for instance, array elements) and their contents
on any processor can be viewed at any point, as illustrated in
Figure 3. The CHARM++ PUP framework, as described in
Section 4.1, is used to retrieve and format program entities.
The Converse scheduler, which is the core of CHARM++,
interacts with a pool of messages placed in queues on each
of the processors[7]. These messages could be generated
locally or could be from remote processors. In CHARM++,
a message could be due to an entry method invocation, a
ready thread, a message sent to a ready thread or a han-
dler posted previously. A message is a chunk of memory
with a header and data. The debugger allows the user to
freeze the program and inspect the messages in the queues.
From the data part of the CHARM++ message the debug-
ging framework encodes the destination object, the method
being invoked and the parameters for the user to interpret.

Specific individual processes of the CHARM++ program

Figure 3. Viewing the contents of a parallel
object

Figure 4. Parallel debugger showing gdb run-
ning for three processors

4



can be attached to instances ofgdb during the course of
program execution as shown in Figure 4. The older “++de-
bug” option provides the same ability, but it always starts a
sequential debugger for every process, while the new inter-
face can start the debugger on a subset of processors.

4 Implementation

Our parallel debugger GUI interface, written using Java,
connects to the parallel program across the network using a
protocol called Converse Client/Server (CCS), as described
in Section 4.2. To extract program state, it calls a debugging
CCS handler described in Section 4.3, which traverses and
sends runtime and user objects using the PUP framework
described next.

4.1 CHARM++ PUP framework

The PUP framework is a method to describe the in-
memory layout of an object, and was originally designed
to support object migration in CHARM++. To copy a com-
plicated object from one processor to another, we must pack
the object into a network message, ship the message to an-
other processor, and finally unpack the message into an ob-
ject on the other side. This is an extremely common op-
eration, used in Java RMI serialization/deserialization, pa-
rameter marshalling and unmarshalling for CORBA com-
munication, and even MPI derived datatypes. PUP stands
for Pack/UnPack, and is a compact, efficient, and flexible
method to perform this packing and unpacking of user ob-
jects for C++.

Because of the type safety and introspection capabilities
of the Java language and virtual machine, Java can pack and
unpack arbitrary objects automatically, without any further
effort. CORBA requires the user to describe the format of
each communicated object in a CORBA IDL file, which is
preprocessed to generate pack and unpack code. MPI re-
quires the user to build a “derived datatype” at runtime, us-
ing type construction library calls that list each field of each
communicated object; because this is complicated, users of-
ten write explicit packing and unpacking code to ship com-
plicated objects.

CHARM++ originally required users to write an explicit
pack and unpack routine for each object, as well as a size
routine to determine the outgoing message size before pack-
ing. The motivation for PUP is that the code used to size
the message, pack an object into a message, and unpack an
object from a message must match up exactly—everything
that is packed must be unpacked, and vice versa. Writing
three interrelated routines for every object is tedious, error-
prone, and contributes to the burden of parallel program-
ming.

In the PUP framework, sizing, packing, and unpack-
ing are all is controlled by a single user-written subroutine
called apup routine. Thepup routine simply calls a virtual
method on each of the object’s fields, which are then sized,
packed or unpacked as appropriate.

Consider a very simple C++ class with three fields:

class foo {
int A;
float B;
long C;

public:
...

};

We define an abstract class named “PUP::er” with one
virtual method named “bytes”, which takes the address of
an object field and a description of the type of data in the
field. A puproutine for foo would then just pass each of the
foo object’s fields into the PUP::er.

void foo::pup(PUP::er &p) {
p.bytes(&A,MPI_INT);
p.bytes(&B,MPI_FLOAT);
p.bytes(&C,MPI_LONG);

}

Because the PUP::er is given the address and data type
of each of the objects’ fields, it can perform arbitrary ma-
nipulations of those fields, including copying data into the
fields, copying data out of the fields, or even building an
MPI derived datatype using the field offsets.

// Compute total size of object fields
class SIZING_PUP_er : public PUP::er
{
public:

int totalsize; // size of object
SIZING_PUP_er() {totalsize=0;}

virtual void
bytes(void *field,int datatype) {

totalsize+=size(datatype);
}

};

// Copy data out of object fields
... define destbuf as PUP::er field ...
void PACKING_PUP_er::
bytes(void *field,int datatype) {

memcpy(destbuf,field,size(datatype));
destbuf+=size(datatype);

}

5



// Copy data into object fields
... define srcbuf as PUP::er field ...
void UNPACKING_PUP_er::
bytes(void *field,int datatype) {

memcpy(field,srcbuf,size(datatype));
srcbuf+=size(datatype);

}

// Build an MPI derived datatype
void MPI_DATATYPE::
bytes(void *field,int datatype) {

displacements[n]=field-objbase;
datatypes[n]=datatype
n++;

}

It should be clear the very simple technique of calling a
virtual method for each field of an object is quite powerful.
CHARM++ actually uses the first three PUP::ers above to
size network messages and copy data into and out of ob-
jects as they are sent across the network. The overhead for
using the very general pup method to do the copy is exactly
one virtual function call per field, which on many machines
is faster than the memory copy itself. Other PUP::ers, not
shown here, can read and write objects to and from disk, or
even convert binary data formats between different machine
architectures.

PUP operator

However, the application code must tediously pass to the
“bytes” routine the address and datatype of each field of
each object. Luckily, we can use C++ operator overloading
to automatically extract the datatypes, and also to provide a
simpler syntax:

void operator|(PUP::er &p,int &x)
{ p.bytes(&x,MPI_INT); }
void operator|(PUP::er &p,float &x)
{ p.bytes(&x,MPI_FLOAT); }
... and so on for other datatypes ...

void foo::pup(PUP::er &p) {
p|A; // calls p.bytes
p|B;
p|C;

}

Users can treat operator| as a builtin operator, analogous
to the<< and>> C++ iostream operators. This operator
overloading also provides a surprising benefit: we can now
use the same syntax to pup user-defined classes that we use
for builtin types like “int”.

void operator|(PUP::er &p,foo &x)
{ x.pup(p); }

class bar {
int I;
foo F;
...

}
void bar::pup(PUP::er &p) {

p|I; // calls p.bytes
p|F; // calls foo::pup

}

Notice how C++’s operator overloading selects the ap-
propriate way to pup the two fields I and F, even though the
operator| call looks identical.

Operator overloading can also be applied to pup tem-
plated classes, with the template type determined by C++
type resolution. For example, we can easily define a pup
operator for the standard C++ class std::vector. The ele-
ments of the vector are pup’d using their own pup operator,
so they can be of any type.

template<class T>
void operator|(PUP::er &p,

std::vector<T> &v)
{

int length=v.size();
p|length;
p.resize(length);
for (int i=0;i<length;i++)

p|v[i];
}

This std::vector pup operator shows some of the strange
beauty of using a single routine for both packing and un-
packing. While packing, the length of x is known, the
“p|length” call stores the length, and the “resize” call speci-
fies the current size and hence does nothing. While unpack-
ing, the length is initially zero, “p|length” extracts the true
length, and the “resize” call actually allocates space in the
vector for the new elements.

Because operator overloading follows the type system,
we can now pup an array of ints, std::vector<int>; or a 2D
array of foo objects, std::vector< std::vector<foo>>, us-
ing the same “p|x” syntax used to pup plain ints. CHARM++
includes builtin pup operators for std::vector, std::list,
std::string, std::map, and std::multimap, templated over any
object with a pup operator. PUP thus uses C++’s sophisti-
cated type and template overloading system to approach the
true type introspection ability of Java.

6



PUP field names

One final modification to the PUP::er syntax provides not
only the value and data type of the fields, but the human-
readable names of fields as well. This uses a macro to
turn the field name into a string, which is passed to another
PUP::er virtual method “fieldName”, then pups the data us-
ing operator| as usual.

#define PUP(field) \
p.fieldName(#field); \
p|field;

void foo::pup(PUP::er &p) {
PUP(A); // calls p.fieldName("A")
PUP(B); // then p.bytes
PUP(C);

}

Most PUP::ers ignore the field names, but CHARM++
has several PUP::ers that use the field names to read and
write objects from keyword/value ASCII files. Finally, a
debugging PUP::er can send the annotated object data off to
the parallel debugger for display. For parallel objects, our
debugging support by default calls the same pup routine as
is used for migration, but also provides a special “ckDe-
bugPup” pup routine that can be used to make debugging-
specific data available via pup.

Other PUP::er features allow for dynamically allocated
data (which must be allocated during the unpack phase), the
ability to easily pup a pointer-to-subclass, and pup routines
written in C or Fortran. See the CHARM++ manual[13] for
details.

Because the support for PUP is built into the runtime sys-
tem and, for networking, always built into the application,
there is no need to compile the application with ‘-g’ (unless
also using a sequential debugger). This means our parallel
debugger can be used to examine the internal state of the
optimized, production version of an application.

4.2 CCS network interface

The Converse Client-Server (CCS) network interface [7]
enables Converse (and hence CHARM++) programs to act
as parallel servers, responding to requests from the net-
work. The server side of this interface is built into every
CHARM++ program, and the client side is provided as a li-
brary for C and Java.

A CCS client, in this case the parallel debugger, connects
to the server via a TCP connection and sends it a request,
which consists of a string handler name and a block of bi-
nary request data. The CHARM++ runtime uses the handler
name to look up and call the appropriate handler function
from an extensible table. For example, when the parallel

debugger sends the request name “ccssetbreakpoint”, the
runtime executes a handler that installs a breakpoint. Af-
ter the server has processed the request, it responds with a
block of binary response data. This simple request/response
protocol allows information to be injected into and extracted
from a running parallel program.

Because the client opens the TCP connection for a CCS
request, CCS can be used by clients behind firewalls or NAT
routers. When CCS is running over the unsecured internet,
it can be run in a secure authentication mode[14], which
uses a SHA-1 hash of the request, a nonce, and a shared
secret key for authentication. Authentication prevents arbi-
trary users from injecting messages, but because of export
regulations we do not provide network encryption. If se-
crecy is also important, users can also add encryption.

4.3 Debugging access via CCS

The CHARM++ runtime provides a special CCS handler
to extract formatted information about the entities in the
parallel program. The CCS handler allows lists of objects
to be registered, and provides a way to call the objects’ pup
routines and extract formatted information about the object
structure. Various parts of the runtime system register the
different classes of objects, including application parallel
objects and network messages, with this single CCS han-
dler. This allows the debugger to access these different ob-
jects in a uniform manner. CHARM++ applications or li-
braries can also register more detailed information, which
can then be presented by the debugger.

Because this method uses the PUP framework, which
CHARM++ applications already support for migration, zero
additional code must be written to use an application in the
debugger. The is both easier to use as well as more powerful
than our previous debugger[15], which required a special
“debugging display routine” in each object and even then
could only display flat ASCII text.

5 Conclusions and future work

The debugging solutions presented in this work provide
a number of useful features for CHARM++ programmers.
The parallel debugger allows the programmer to inspect the
state of a running parallel program at a very high level, in-
cluding the contents of array elements and network mes-
sages. It allows the programmer to follow the control flow
in the parallel program by setting break points at entry
methods. It provides the programmer a more focused means
for switching to sequential debugging on selected proces-
sors on the fly. The record and replay mechanism allows
the programmer to deterministically reproduce a program’s
behavior.

7



In the future, we will use the CHARM++ PUP frame-
work to provide better, higher-level views of objects and
messages. In particular, it should be possible to support ex-
tensive analysis and visualization of the multidimensional
arrays so common in scientific computing. We will extend
the functionality of the parallel debugger with the capabil-
ities of our performance analysis tool for CHARM++, Pro-
jections [5]. Projections includes detailed tracing, network
and performance statistics, together with automated anal-
ysis, that could be very useful while debugging or perfor-
mance tuning. The field of parallel debugging for novel
runtime systems is virtually wide open, and there an im-
mense amount of work to be done.

5.1 Acknowledgements

This work was supported in part by the National Science
Foundation (NSF NGS 0103645) and the local Department
of Energy ASCI center, CSAR (DOE B341494).

References

[1] T. J. Blanc and J. M. Mellor-Crummey. Debugging parallel
programs with instant replay.IEEE Transactions on Com-
puters, C-36(4):471–482, April 1987.

[2] J. Cownie and W. Gropp. A standard interface for debugger
access to message queue information in MPI. InPVM/MPI,
pages 51–58, 1999.

[3] J. Cunha, J. Lourenco, and T. Antao. A debugging engine for
parallel and distributed environment. InProceedings of 1st
Austrian-Hungarian Workshop on Distributed and Parallel
Systems, pages 111–118, Miskolc, Hungary, 1996.

[4] L. Kalé and S. Krishnan. CHARM++: A Portable Concur-
rent Object Oriented System Based on C++. In A. Paepcke,
editor, Proceedings of OOPSLA’93, pages 91–108. ACM
Press, September 1993.

[5] L. Kalé and A. Sinha. Projections : A scalable performance
tool. In Parallel Systems Fair, International Parallel Pro-
cessing Sympos ium, pages 108–114, Apr. 1993.

[6] L. V. Kal é. The virtualization model of parallel program-
ming : Runtime optimizations and the state of art. InLACSI
2002, Albuquerque, October 2002.

[7] L. V. Kale, M. Bhandarkar, N. Jagathesan, S. Krishnan, and
J. Yelon. Converse: An Interoperable Framework for Paral-
lel Programming. InProceedings of the 10th International
Parallel Processing Symposium, pages 212–217, April 1996.

[8] L. V. Kal é, B. Ramkumar, A. B. Sinha, and A. Gursoy. The
CHARM Parallel Programming Language and System: Part
I – Description of Language Features.IEEE Transactions
on Parallel and Distributed Systems, 1994.

[9] L. V. Kal é, B. Ramkumar, A. B. Sinha, and V. A. Saletore.
The CHARM Parallel Programming Language and System:
Part II – The Runtime system.IEEE Transactions on Paral-
lel and Distributed Systems, 1994.

[10] O. S. Lawlor and L. V. Kaĺe. Supporting dynamic parallel
object arrays.Concurrency and Computation: Practice and
Experience, 15:371–393, 2003.

[11] J. May and F. Berman. Panorama: A portable, extensible
parallel debugger. InProceedings of ACM/ONR Workshop
on Parallel and Distributed Debugging, pages 96–106, San
Diego, California, 1993.

[12] J. May and F. Berman. Designing a parallel debugger for
portability. InProceedings of the Eighth International Par-
allel Processing Symposium, pages 909–915, 1994.

[13] Parallel Programming Laboratory, University of Illinois,
Urbana-Champaign. The Charm++ Programming Lan-
guage Manual, Version 6.0, Jan 2004.

[14] Parallel Programming Laboratory, University of Illinois,
Urbana-Champaign.Converse Programming Manual, Jan
2004.

[15] P. Ramachandran and L. V. Kalé. Mulitlingual debug-
ging support for data-driven and thread-based parallel lan-
guages. InLecture Notes in Computer Science: Proc. of 12th
International Workshop on Languages and Compilers for
Parallel Computing (LCPC ’99), pages 236–250. Springer-
Verlag, August 1999.

[16] A. Sinha. Performance Analysis of Object Based and Mes-
sage Driven Programs. PhD thesis, Department of Com-
puter Science, University of Illinois, Urbana-Champaign,
January 1995.

8


