
Performance Modeling and Programming Environments for Petaflops
Computers and the Blue Gene Machine

Gengbin Zheng, Terry Wilmarth, Orion Sky Lawlor, Laxmikant V. Kalé, Sarita Adve, David Padua
Dept. of Computer Science

University of Illinois at Urbana-Champaign�
gzheng, wilmarth, olawlor, kale, sadve, padua � @cs.uiuc.edu

Philippe Guebelle
Dept. of Civil Engineering

University of Illinois at Urbana-Champaign
geubelle@uiuc.edu

Abstract

We present a performance modeling and programming
environment for petaflops computers and the Blue Gene ma-
chine. It consists of a parallel simulator, BigSim, for pre-
dicting performance of machines with a very large num-
ber of processors, and BigNetSim, an ongoing effort to
incorporate a pluggable module of a detailed contention-
based network model. It provides the ability to make per-
formance predictions for machines such as BlueGene/L.
We also explore the programming environments for several
planned applications on the machines including Finite Ele-
ment Method (FEM) simulation.

1 Introduction
Parallel machines with enormous compute power and

scale are now being built consisting of tens of thousands of
processors and capable of achieving hundreds of teraflops of
peak speed. For example, the Blue Gene (BG/L) machine
being developed by IBM and slated for early 2005 delivery,
will have 128,000 processors and 360 teraflops peak per-
formance. Ambitious projects in computational modeling
for science and engineering are gearing up to exploit this
power to achieve breakthroughs in areas such as rational
drug design, genomics, proteomics, engineering design and
computational astronomy.

Development of a programming environment for such
machines is a significant challenge. Further, it is also impor-
tant to understand performance issues in specific algorithms
thoroughly, so next-generation applications can be built to
scale to such large machines. We have been engaged in a
project to address these challenges for over two years. In
this paper we summarize our progress and findings so far,
with focus on recent unpublished results.

We explored the CHARM++ programming model as an
appropriate model for large machines because of its abil-
ity to virtualize processors [1], allowing programmers to

not worry about specific actions running on specific pro-
cessors. This property seems essential for dealing with
large machines, because it would be impractical to think
about what is running where on 100k processors. Further,
CHARM++ provides a solution to the issues that arise due
to fine-grained computations resulting from using large ma-
chines. We first describe issues, explored using an emula-
tor, in scaling CHARM++ and Adaptive MPI [2] (built using
CHARM++) to run on large machines. Next we present our
performance prediction system, based on parallel discrete
event simulation, and novel ideas to avoid re-execution dur-
ing optimistic simulation. Recent performance results us-
ing the simulator for structural dynamics computations in-
volving the Finite Element Method (and unstructured grids)
are discussed next. Progress on detailed architecture sim-
ulation of multi-processor nodes, which is needed to accu-
rately predict individual processor performance in the con-
text of a large simulation is then summarized, followed by
an overview of future and ongoing research issues in the
final section.

2 Programming Petaflops Machines
Deciding the characteristics of an ideal programming en-

vironment for a massively parallel machine like Blue Gene
is a challenging task. This is because dealing with tens of
thousands or even millions of processors requires qualita-
tive change in both the programming environment and the
runtime system.

In this context, we have developed a multi-tier program-
ming model in which the object layer forms a middle layer
which is supported from below by a low level explicit
model, and which supports higher level components includ-
ing domain specific languages and libraries. This section
briefly describes the middle and lower layers. The higher
level is presented in section 4.1.

The lowest level model strives to provide access to a ma-
chine’s capabilities. In the programmer’s view, each node
consists of a number of hardware-supported threads with

1



common shared memory. A runtime library call allows a
thread to send a short message to a destination node. The
header of each message encodes a handle function to be in-
voked at the destination. A designated number of threads
continuously monitor the incoming buffer for arriving mes-
sages, extract them and invoke the designated handler func-
tion. We believe this low level abstraction of the petaflops
architectures is general enough to encompass a wide variety
of parallel machines with different numbers of processors
and co-processors on each node.

We have developed a software emulator based on this
low level model. The details of the emulator and its API
were presented in [3].

In this base level model, the programmer must decide
which computations to run on which node. The program-
ming environment at a higher level relieves the application
programmer of the burden of deciding where the subcom-
putations run.

In this context, we have evaluated the CHARM++ as
a parallel programming language for petaflops machines
and also as an alternative to the popular MPI methodology.
CHARM++ is an object-based portable parallel program-
ming language that embodies message-driven execution. A
CHARM++ program consists of parallel objects and object
arrays[4], which communicate via asynchronous method in-
vocations. CHARM++ includes a powerful runtime system
that supports automatic load balancing based on migratable
objects. CHARM++ has been ported to the emulator in [5].

Adaptive MPI, or AMPI, is an MPI implementation
and extension based on CHARM++ message driven sys-
tem, that supports processor virtualization[1]. AMPI imple-
ments virtual MPI processes (VPs), several of which may be
mapped to a single physical processor. Taking advantage of
CHARM++’s migratable objects, AMPI also supports adap-
tive load balancing by migrating MPI threads.

In this environment, MPI is a special case for AMPI
when exactly one VP is mapped to a physical processor.

3 Performance Modeling

Accurately estimating the performance of target applica-
tions on massively parallel machines is useful to application
programmers in adapting their codes to the new architec-
tures. Such a performance estimator is also an essential tool
for designers of petaflops machines who, in order to make
good design choices, need to evaluate alternate architectural
features in the context of specific benchmarks.

It is clearly impractical, if not impossible, to simulate
a million processor machine on a single processor. In-
stead, we aim at the challenges involved in carrying out
such simulations on a conventional parallel machine with
over 1,000 processors, attaining the desired timing accuracy
using multi-level simulation techniques.

We have developed BigSim[6] for simulating petaflops
class machines such as Blue Gene/L. In the rest of this sec-
tion, we will first present the BigSim simulator, followed by
BigNetSim. BigNetSim is a work in progress that extends
BigSim with network simulation capability.

3.1 BigSim

Performance of parallel applications is known to be diffi-
cult to predict due to the complexity of the communication
system and non-determinacy of the simulation. Messages
may arrive out of order, arising from the fact that we are
using multiple processors to carry out the simulation. As a
result, messages with later time stamps may arrive before
messages with earlier timestamps, causing causality errors
and destroying the accuracy of the simulation.

Traditional methods of correcting this involve high syn-
chronization overheads as are often found in optimistic con-
currency control. These overheads include: (a) checkpoint-
ing overhead, (b) rollback overhead and (c) forward execu-
tion overhead. In BigSim, taking advantage of the parallel
program’s inherent determinacy, we are able to greatly im-
prove the simulation efficiency by dramatically reducing the
overheads. The details of BigSim are described in [6].

BigSim is based on direct execution of an application
on the emulator described previously. Our approach for
the simulation involves letting the emulated execution of
the program proceed as usual, while concurrently running
a parallel algorithm that corrects time-stamps of individual
messages.

BigSim is a coarse simulator in that the network con-
tention is ignored although path-dependent message laten-
cies are modeled. This is often found adequate for ma-
jor class of computation bounded applications. However,
for applications that require detailed network modeling,
the simulator needs to be extended to model network con-
tention. Thus we present an extension to BigSim, the
BigNetSim simulator, an ongoing effort to incorporate de-
tailed network simulation in performance prediction.

We next describe the PDES engine POSE used in the de-
velopment of BigNetSim and our progress so far.

3.2 Postmortem Simulation

BigNetSim takes a different approach by performing
postmortem simulation. The BigSim emulator generates a
log of tasks that were performed and their dependencies.
However, the tasks in this log have not been ordered in
time with respect to each other, and need to be timestamp-
corrected in order to obtain performance results about the
original program that was run on the BigSim emulator. To
perform timestamp correction, we use a parallel discrete
event simulation (PDES) environment called POSE[7][8].

BigNetSim plugs into the timestamp correction simula-
tion and simulates the same application over a detailed net-
work model. The behavior of the network model can be
varied by its input parameters to model a variety of situa-
tions without ever needing to re-run the original simulation.

3.2.1 POSE

Our PDES environment is built in CHARM++.
CHARM++ supports the virtualization programming
model, an approach we believe will give rise to great im-
provements in PDES performance. Virtualization involves
dividing a problem into a large number � of components
that will execute on � processors[1]. � is independent of



� , though ideally ����� � . The user’s view of the program
consists of these components and their interactions; the
user need not be concerned with how the components map
to processors. The underlying run-time system takes care
of this and any subsequent remapping (see Figure 1).

User View

System Implementation

Figure 1. Virtualization in CHARM++

In CHARM++, these components are known as chares.
Chares are C++ objects with methods that may be invoked
asynchronously from other chares. Since many chares can
be mapped to a single processor, CHARM++ uses message-
driven execution to determine which chare executes at a
given time. This is accomplished by having a dynamic
scheduler on each processor. The scheduler has a pool of
messages, i.e. method invocations destined for a particular
chare, and selects one of these, determines the object it is
destined for, and then invokes the corresponding method on
the object. At completion, the scheduler selects the next
message. Different scheduling policies are available, as
well as prioritized execution, which enables the user to at-
tach priorities to messages. The advantage of this approach
is that no chare can hold a processor idle while it is waiting
for a message. Since ��� � , there may be other chares that
can do work in the interim.

The logical processes (LPs) of PDES can be mapped
onto CHARM++’s chares in a straightforward manner. Sim-
ilarly, we use timestamps on messages as priorities and thus
the CHARM++ scheduler becomes an event list. Virtualiza-
tion provides the simulation programmer with a view of the
program consisting of the entities in the model and not the
underlying parallel configuration.

Posers In POSE, simulation entities, or posers are special
types of chares that have a data field for object virtual time
(OVT). This is the number of simulated time units that have
passed since the start of the simulation relative to the object.
Posers also have event methods similar to CHARM++ entry
methods (invoked by sending messages from one object to
another, possibly on a different processor), with the main
difference being the presence of a data field for timestamp
in all messages sent to invoke an event method.

Posers can pass simulated time in two ways. First is the
elapse function. This is used to pass a certain amount of
local time (presumably performing some activity). It ad-
vances the OVT of the poser in which it is called. The sec-
ond means is by an offset added to event invocations. This
can be used to schedule a future activity or to indicate transit
time in a simulation. For example, suppose the event being

Data Fields

Event Methods

Local Functions

OVT

Event Queue

Simulation Wrapper Class

Event Methods
Synchronization Strategy

Representation of User Object

Figure 2. Components of a poser.

invoked involves the movement of data such as a packet be-
ing sent over a network, and it takes � time units to transmit
it, we would schedule an event at the point receiving the
packet at a time that is offset by � from the current time.

Posers have plug-in behaviors for their underlying im-
plementation. For the user, it is enough to know that the
implementation involves the queuing of events, the synchro-
nization of their execution, and access to and modification
of poser state. We refer to these respectively as the wrap-
per behavior, the synchronization strategy behavior, and
the representation behavior. Different approaches can be
used for each. Figure 2 illustrates how these components fit
together. The simulation developer concentrates on mod-
eling entities (the representation). For more control over
simulation behavior and performance, the developer can try
different synchronization strategies.

Why encapsulate so much information in each entity, and
then encourage the breakdown of the physical system into
many such entities? Virtualization allows us to maximize
the degree of parallelism. The scope of simulation overhead
resulting from a synchronization error is limited to the entity
on which the error occurs. Since different entities may have
different behaviors, this limits the effects of those behaviors
to a smaller scope.

Speculative Synchronization POSE makes use of op-
timistic concurrency control which originated as Time-
Warp[9]. When an object receives an event, it gets con-
trol of the processor. The object’s synchronization strategy
is then invoked and checks for any synchronization error
corrections (rollbacks, cancellations) before it performs for-
ward execution steps (events).

Here the opportunity to perform speculative
computation[10] arises. All optimistic strategies per-
form some amount of speculative computation. In more
traditional approaches, an event arrives and is sorted into
the event list and the earliest event is executed. We know



the event is the earliest available on the processor, but we
do not know if it is the earliest in the entire simulation, thus
executing it is speculative.

In our approach, the behavior is similar with some ex-
ceptions. First, we have a speculative window that governs
how far into the future beyond the global virtual time (GVT)
estimate an object may proceed. Speculative windows are
similar to the time windows of other optimistic variants, ex-
cept in how events within the window are processed.

In POSE, events are inserted into the event queue on the
object for which they are destined. When the object gets
control, it invokes the synchronization strategy to process
events. Typically, the event just received will be the event
processed, and no other events will exist on that object.
However, some events may arrive slightly ahead of sched-
ule and may be worthy candidates for speculative execution.
Others may arrive with timestamps very far in the future and
it may be unwise to execute them speculatively.

The synchronization strategy determines how to process
the events within a speculative window. To avoid reschedul-
ing overhead, we allow objects freedom to speculate once
they get control. Event processing on the object follows
this pattern: if there are events with timestamp ��� GVT but
within the speculative window, do all of them. The later
events are probably not the earliest in the simulation, and
it is very likely that they are not even the earliest on that
processor. We allow the strategy to speculate that those
events are the earliest that the object will receive. By han-
dling events in bunches, we reduce scheduling and context
switching overhead and benefit from a warmed cache, but
risk additional rollback overhead.

POSE is a work in progress. We are developing an adap-
tive strategy that strives to execute more events at a time
while minimizing rollbacks. This strategy will detect object
behavior patterns and adjust to them by altering speculative
window size and event processing behavior.

3.2.2 Timestamp Correction

For the timestamp correction simulation, we read the
trace log files generated by the BigSim emulator. An appli-
cation execution was emulated on some configuration, and
all the tasks and their dependencies are recorded in these
logs. In our simulation, we recreate entities in POSE to
model the processors and nodes of the emulation. We then
read in the tasks and use the simulation to pretend to exe-
cute them. For each task, we know what it depends on, what
depends on it, the duration of the task, and what other tasks
were generated by it and when these other tasks were gen-
erated (as an offset from the current task’s start time). We
also have an estimate of network latency which we use to
determine how much time generated tasks spend in transit
to the processor on which they will be executed.

What we don’t know is exactly when each task started
(though we do have an uncorrected timestamp for each
task), and without that information, we do not know how
the application that was emulated performed. Given the in-
formation above, we start the first task off at virtual time
zero, and let the tasks “execute” and record the virtual time

executeTask(task)
if (task.dependencies = 0) //dependencies met
oldStartTime := task.startTime;
task.startTime := ovt; //correct start time
for each task y in task.generatedTasks

yStart := task.newStartTime +
(y.generatedTime - oldStartTime);

generate executeTask event on y at time
yStart+latency;

end
elapse(task.duration); //advance virtual time
task.done := TRUE;
for each x in task.dependents //enable dependents

decrement x.dependencies;
if (x.dependencies = 0)

generate executeTask event on y at time ovt;
end

end
end

end

Figure 3. Feigned task execution in POSE.

at which each task starts. The algorithm for this feigned
execution is shown in Figure 3.

When a task executes, it first checks to make sure that
all its dependencies have been met, i.e. all tasks on which it
depends have been executed. If they have, then it is time to
execute this task. We make a backup copy of this task’s in-
correct timestamp (for calculating offsets of generated tasks
later) and record the processor’s current virtual time as the
task’s correct start time. Then we invoke executeTask
for all of this task’s generated tasks, calculating the start
time for each by offsetting the correct start time for this task
by the same offset as before.

Next, we elapse the local virtual time by the duration
of the task and mark it done. Now it is safe to enable any
tasks that were dependent on this one. The algorithm goes
through all the dependents, and if a dependent is enabled (it
is not dependent on any other unexecuted tasks), it can be
executed immediately.

When all tasks have been executed, they should have cor-
rect timestamps and the final GVT should represent a cor-
rect runtime for the emulated application.

3.2.3 Big Network Simulation

BigNetSim takes the POSE timestamp correction simu-
lation to the next level. Instead of using some preset latency
value to determine message transit time, we actually model
the message as it passes through a detailed contention-based
network model. The power of this approach is that we could
model any type of network we wish and plug it into the orig-
inal timestamp correction simulation and get new results.
This enables us to run the application emulation once, and
reuse the trace logs generated by the emulation to repeat-
edly analyze the application in a variety of network config-
urations. Figure 4 shows how these components interact.

For our network simulation, the nodes are configured
with dimensions as originally given to the emulator. Each
node has a switch which routes message packets through
the network via six channels. Communication is achieved
by first trying to lock a path of channels between switches
from the source to the destination. Once a path is obtained,
the switch sends out the packets on the appropriate outgo-



Tasks
Timestamp−corrected

Realistic

Emulator Correction
Timestamp

POSE

(tasks & dependencies)

BigSim

Trace Log Files

BigNetSim

Figure 4. Interaction between BigSim, POSE

timestamp correction and BigNetSim

ing channel. After the last packet is transmitted, the path is
unlocked one channel at a time, following the last packet.

BigNetSim is currently parameterized by bandwidth,
wraparound cost (for channels from edge and corner nodes
to other edge/corner nodes), and maximum packetsize.

4 Parallel Libraries and Domain Specific
Frameworks

Parallel algorithms developed for conventional parallel
machines are not necessarily appropriate or efficient for
petaflops machines. Parallel algorithms for such class of
petaflops machines must handle low bisection bandwidth
and relatively low memory to processor ratio. They must
exploit the availability of dedicated communication threads
and the existence of multiple parallel communication links.
They must also meet the challenges of scalability.

We have developed and evaluated several parallel frame-
works and their applications for petaflops class machines
including Molecular Dynamics (MD) and FEM framework.

The molecular dynamics simulation of biomolecules is
one of the planned applications for Blue Gene/L. It is a chal-
lenging application to parallelize. A microsecond simula-
tion includes about a billion timesteps. Thus, each timestep
involves a relatively small amount of computation that must
be effectively parallelized.

We have developed an experimental prototype program
called LeanMD that models the essential computations
of MD. Performance study and analysis of LeanMD on
BigSim for Blue Gene/L in [6] shows that LeanMD can
scale up to petaflops machines.

In this section, we focus on the parallel FEM framework
and its simulation on massive parallel machines.

4.1 Big FEM Simulation

The Finite Element Method (FEM) is a popular tech-
nique often used in the study of fracture and structural
mechanics. We have developed a parallel framework[11],
called the CHARM++ FEM Framework to make it easy to
parallelize a serial FEM code. The framework handles the
finite element mesh that discretizes the problem domain,
partitioning the mesh for parallel execution, and providing
easy to use communication primitives defined on the mesh.

There are several obstacles to solving FEM problems on
very large machines. First, we must generate a mesh of
sufficient size; second, unless the mesh is enormous, we

must deal with the problem’s small grainsize.

4.1.1 FEM Meshes for Large Machines

Consider a high-resolution fracture dynamics simulation
of a block of metal. We first decompose the block of metal
into “elements”, which are small pieces of the domain with
a simple shape, often tetrahedra or cubes. In theory, the
number of elements is determined only by the physical fi-
delity we wish to achieve, but in practice the number of
elements, and hence the accuracy of the simulation, is often
limited by the memory and speed of the machine, as sum-
marized in Table 1.

For example, a 1-meter cube of metal discretized into
a 1cm scale mesh will require one million elements. But
1cm is quite coarse; if we need 1mm resolution the mesh
will have one billion elements. If elements require 40 bytes
each, such a mesh would require 40 GB of storage. This is
larger than current serial machines can handle, but is plau-
sible even on today’s parallel machines.

One difficulty is that real problems are defined on com-
plicated domains, like machine parts and fracture surfaces,
so generating a mesh for the domain is a nontrivial task.
Meshes are usually generated by special meshing software
in an offline, serial process, so no publicly available mesh-
ing software can generate billion-element meshes. A typical
solution to this is to first generate a relatively coarse mesh in
serial to capture the basic geometry of the domain, then use
parallel mesh refinement (or mesh multiplication) to gen-
erate more elements where needed. The FEM framework
does not handle mesh generation, but it includes rudimen-
tary capabilities for parallel mesh refinement.

Once a mesh is generated, it must be partitioned, and
the pieces sent to different processors for parallel execu-
tion. The FEM framework currently uses the serial Metis
partitioning library, so the partitioning is performed com-
pletely on one processor, which becomes a bottleneck for
large meshes. We are working on integrating the parallel
ParMetis partitioning package to avoid the serial mesh par-
titioning bottleneck, which should allow us to use larger
meshes and scalably partition the mesh. An alternative
approach is to use a simpler but inaccurate mesh parti-
tioner such as geometric recursive coordinate bisection,
then fix the resulting load imbalance using our load balanc-
ing framework.

4.1.2 FEM Grainsize on Large Machines

FEM computations have a characteristic parallel com-
munication pattern—each processor first exchanges data
with neighboring processors, then performs local computa-
tion and repeats the process. As can be seen in Table 1, the
time spent in local computation in each step can be quite
small, especially for larger machines and smaller meshes.
This small “grainsize” means communication happens more
often, which can lead to poor performance.

For example, with a 1M element mesh running on
100,000 processors, each processor might only have 10us of
computation between messaging phases. Since each mes-
sage takes on the order of 10us, processors will spend all



Resolution Elements Storage 1 Processor 1K Processors 100K Processors 1M Processors
1cm ����� 40MB 1s 1ms 10us 1us

1mm ����� 40GB 1000s 1s 10ms 1ms

Table 1. Meshes for a 1 ��� domain, storage requirements and time per timestep on various machines.

their time communicating and efficiency will be very low.
Communication latency can be hidden to a large extent

with the technique of “processor virtualization”, in which
the problem is decomposed into more pieces than proces-
sors, and the pieces scheduled dynamically based on which
messages are available. CHARM++ and the FEM frame-
work fully support virtualization, and in fact require no ex-
tra user code for a virtualized run.

Another complementary approach to handle communi-
cation latency is the ghost cell expansion method [12],
where redundant computations around each processor’s
border are used to decrease the frequency of message ex-
change. This multiple-ghost approach has only been im-
plemented for structured grids, however, and the extension
to unstructured grids, while conceptually straightforward,
would be complicated to implement.

4.1.3 Bottlenecks on Large Machines

In summary, there are a number of practical bottlenecks
to execution on very large machines. First, large meshes
must be generated; this is difficult with today’s tools. Sec-
ond, the meshes must be partitioned for parallel execu-
tion. Finally, the resulting computation may still have small
grainsize, so messaging performance is important.

Our runs with BigSim also exposed a number of unex-
pected bottlenecks and limitations to scalability. For exam-
ple, the serial partitioning library we use consumes memory
proportional to the number of output pieces, not the total
size of the mesh; so even our 4GB machine ran out of mem-
ory when partitioning a relatively small 5M element mesh
into more than 16K pieces. Hopefully ParMetis will solve
this problem.

Similarly, even though our MPI implementation, AMPI,
was designed to be scalable, while trying to simulate very
large machines we discovered our implementation used �
	
total memory for � processors. The culprit was a simple
linear message ordering table kept by each processor, be-
cause the table’s length was proportional to the number of
processors. For today’s machines, where � =1000, the total
amount of memory used was 16MB; but for � =100,000, the
tables would use 160GB! The solution was to break the ta-
bles into (software) pages and only allocate pages when ref-
erenced; this dramatically reduces the storage requirements
for large machines because most processors only communi-
cate directly with a small subset of other processors.

5 Performance
We first present results of validation tests using BigNet-

Sim on Lemieux [13] at Pittsburgh Supercomputer Center.
We then present results of performance prediction and per-
formance analysis of some real world FEM applications us-

ing the simulator. Finally we will present the scaling per-
formance of the BigNetSim simulator itself.

5.1 Validation

We have compared the actual running time of a simple
7-point stencil computation with a 3-D decomposition writ-
ten in MPI with our simulation of it using BigNetSim. In
the program, every chunk of data communicates with its six
neighbors in three dimensions. The Jacobi relaxation com-
putation is performed, and the maximum error is calculated
via MPI Allreduce.

The result is shown in Table 2 for a problem with fixed
size in all runs. The first row shows the running time of
the MPI program on 32 to 256 processors; the second row
shows the predicted running time using BigNetSim offline
on a Linux cluster. The network parameters are based on
Quadrics network specifications. It shows that the simulated
execution time is close to the actual execution time.

Processors 32 64 128 256
Actual run time (s) 2.21 1.07 0.48 0.26
Predicted time (s) 2.35 1.16 0.55 0.30

Table 2. Actual vs. predicted time

5.2 FEM

We studied the performance of a CHARM++ FEM
Framework program, which performs a simple 2D struc-
tural simulation on an unstructured triangle mesh. We chose
a relatively small problem with a 5 million element mesh,
so as to stress efficiency issues. Because our 2D elements
take a little under a microsecond of CPU time per timestep,
this is less than 5 seconds of serial work per timestep.

Figure 5 shows the predicted execution time per step,
simulating 125 to 16,000 processors using only 32 Lemieux
processors. The time per step is 23.5 milliseconds for 125
processors and drops to 640 microseconds on 16,000 pro-
cessors. Figure 6 is the corresponding speedup, normalized
based on the 125 processor time. It shows that the program
can scale well to at least several thousands of processors.

Beyond several thousand processors, when the simulated
time per step drops below a few milliseconds, the parallel
efficiency begins to drop. Sub-millisecond cycle times are
indeed extremely challenging even on today’s small ma-
chines, and we continue to seek methods to improve this
performance on even larger machines.

We also demonstrate the benefits of processor virtual-
ization in CHARM++ for the same FEM program. We use
different numbers of MPI virtual processors, each with a
separate chunk of the problem mesh, on each simulated pro-
cessor. Virtualization allows dynamic overlap of computa-



 0

 5

 10

 15

 20

 128  256  512  1024  2048  4096  8192  16384

pr
ed

ic
te

d 
tim

e 
in

 m
ill

is
ec

on
ds

number of processors

Predicted execution time

Figure 5. Predicted execution time

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 128  256  512  1024  2048  4096  8192  16384

pr
ed

ic
te

d 
sp

ee
du

p

number of processors

Predicted speedup

Figure 6. Predicted speedup

tion and communication, and can improve cache utilization
because each virtual processor’s data is small.

The predicted performance for various degrees of vir-
tualization is illustrated in Figure 7. The problem size in
this test is still the same—a 5 million element mesh, and
the simulated machine size is fixed at 2000 1. Even a low
degree of virtualization dramatically improves performance
by allowing computation and communication to be over-
lapped; higher degrees of virtualization provide little bene-
fit, and eventually the overhead of additional virtual proces-
sors only slows the program down.

5.3 Performance of Post-mortem Simulator

To evaluate the parallel performance of the simulator it-
self, we used the BigSim emulator on 32 real processors
to run a 2D Jacobi program on 8000 simulated processors.
This emulation generated trace log files that we then loaded
into the POSE timestamp correction simulator. We show a
speedup plot for the POSE simulator from 1 to 64 proces-
sors in Figure 8. The simulator processed 5,085,836 events
and had an average grainsize of 198 microseconds.

The figure shows two plots: real speedup and self
speedup. Self speedup shows how the program speeds up
with respect to itself; i.e. the single processor time is the

1Our current partitioning scheme limits the number of partitions. So,
the machine has to be small to allow a high degree of virtualization

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0  2  4  6  8  10

pr
ed

ic
te

d 
pe

r 
st

ep
 ti

m
e 

(m
s)

degree of virtualization

Predicted time vs. degree of virtualization

Figure 7. Predicted execution time vs. degree
of virtualization

Speedup: Timestamp Correction

S
pe

ed
up

0

10

20

30

40

50

PEs
12 4 8 16 32 64

Real Speedup

Self Speedup

Figure 8. POSE Timestamp Correction Simula-
tor Speedup

time for the parallel POSE simulation. Real speedup uses
an ideal sequential time estimate of how long it would take
to execute just the events of the simulation with no over-
head for timestamp sorting; i.e. the time the program would
take if we knew in advance the exact order in which to exe-
cute the events, as well as which events are to be executed.
This is a lower-bound on the sequential time for the simu-
lation. As the figure shows, self speedup is nearly perfectly
linear up to 32 processors and tapers off after that, while
real speedup shows a modest but correspondingly steady
speedup improvement as we add processors.

6 Architectural Simulation
To further improve the accuracy of performance predic-

tion, it is necessary to accurately predict the timings of se-
quential fragments of codes, with instruction level accuracy.
We are exploring the idea of incorporating an architecture
simulation of multi-processor nodes via RSIM [14] simula-
tion infrastructure, and its enhancements.

In the context of such large-scale simulations, it is quite
challenging to exploit such a hardware simulator in BigSim.



This is because detailed microarchitecture-level simulation
runs an order of magnitude slower than other multiprocessor
simulations that do not model the processor in detail.

To overcome the speed penalty, we have enhanced RSIM
with a fast functional simulator called Rabbit. RSIM is used
in Rabbit mode to accelerate initialization and other por-
tions of the code where it is not important to collect timing
statistics. The performance results show that the accelera-
tion provided by “Rabbit Mode” is quite significant[14].

The second enhancement to RSIM models on-chip mul-
tithreading which is likely to be a key feature of future high-
performance chips. Capabilities of simulating chip level
multiprocessors has also been added to RSIM. We have an
initial version of RSIM that supports detection of applica-
tion phases [15], allowing it to predict performance of some
phases without having to simulate them in detail.

With these enhancements to RSIM, we are integrating
RSIM into BigSim to improve the simulation accuracy to
the instruction level.

7 Conclusion and Future Work
It is clear that novel parallel programming models will

be required to program petaflops class machines. This
paper, along with the work in previously published pa-
pers, presents a programming environment for petaflops
machines and Blue Gene. The programming environ-
ment is powered by the idea of processor virtualization in
Charm++’s parallel migratable objects and Adaptive MPI.
The performance of parallel applications written for fu-
ture petaflops computers can be predicted using the BigSim
simulator either in coarse grain or fine grain mode with
contention-based network simulation. The parallel appli-
cations that have been developed and evaluated in this envi-
ronment include Molecular Dynamics simulation and Finite
Element Method simulation. Future work will focus on in-
creasing simulation accuracy and improving the scalability
of the parallel applications.

References
[1] Laxmikant V. Kalé. The virtualization model of paral-

lel programming : Runtime optimizations and the state
of art. In LACSI 2002, Albuquerque, October 2002.

[2] Chao Huang, Orion Lawlor, and L. V. Kalé. Adap-
tive MPI. In The 16th International Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC
03), College Station, Texas, October 2003.

[3] Neelam Saboo, Arun Kumar Singla, Joshua Mostkoff
Unger, and L. V. Kalé. Emulating petaflops machines
and blue gene. In Workshop on Massively Paral-
lel Processing (IPDPS’01), San Francisco, CA, April
2001.

[4] Orion Sky Lawlor and L. V. Kalé. Supporting dynamic
parallel object arrays. Concurrency and Computation:
Practice and Experience, 15:371–393, 2003.

[5] Gengbin Zheng, Arun Kumar Singla, Joshua Mostkoff
Unger, and Laxmikant V. Kalé. A parallel-object

programming model for petaflops machines and blue
gene/cyclops. In Next Generation Systems Pro-
gram Workshop, 16th International Parallel and Dis-
tributed Processing Symposium(IPDPS), 2002, Fort
Lauderdale, FL, April 2002.

[6] Gengbin Zheng, Gunavardhan Kakulapati, and
Laxmikant V. Kalé. Bigsim: A parallel simulator
for performance prediction of extremely large paral-
lel machines. In 2004 IPDPS Conference, 18th Inter-
national Parallel and Distributed Processing Sympo-
sium, Santa Fe, New Mexico, April 2004.

[7] Terry Wilmarth. Pose: A study in scalable paral-
lel discrete event simulation. Technical Report 03-
16, Parallel Programming Laboratory, Department of
Computer Science, University of Illinois at Urbana-
Champaign, May 2003.

[8] Terry Wilmarth and L. V. Kalé. Pose: Getting over
grainsize in parallel discrete event simulation. Tech-
nical Report 04-01, Parallel Programming Laboratory,
Department of Computer Science, University of Illi-
nois at Urbana-Champaign, January 2004.

[9] D. Jefferson, B. Beckman, F. Wieland, L. Blume, and
M. Diloreto. Time warp operating system. In Proceed-
ings of the eleventh ACM Symposium on Operating
systems principles, pages 77–93. ACM Press, 1987.

[10] L.V. Kale, B. Ramkumar, V. Saletore, and A. B. Sinha.
Prioritization in parallel symbolic computing. In T. Ito
and R. Halstead, editors, Lecture Notes in Computer
Science, volume 748, pages 12–41. Springer-Verlag,
1993.

[11] Milind Bhandarkar and L. V. Kalé. A Parallel Frame-
work for Explicit FEM. In M. Valero, V. K. Prasanna,
and S. Vajpeyam, editors, Proceedings of the Inter-
national Conference on High Performance Computing
(HiPC 2000), Lecture Notes in Computer Science, vol-
ume 1970, pages 385–395. Springer Verlag, Decem-
ber 2000.

[12] Chris Ding and Yun He. A ghost cell expansion
method for reducing communications in solving pde
problems. In SuperComputing 2001 Technical Papers,
2001.

[13] Lemieux. http://www.psc.edu/machines/tcs/lemieux.html.

[14] Christopher J. Hughes, Vijay S. Pai, Parthasarathy
Ranaganathan, and Sarita V. Adve. Rsim: Simulat-
ing shared memory multiprocessors with ilp proces-
sors. IEEE Computer, special issue on simulation,
pages 40–49, February 2002.

[15] T. Sherwood, S. Sair, and B. Calder. Phase track-
ing and prediction. In Proceedings of the 30th
International Symposium on Computer Architecture
ISCA’2003, 2003.


