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ABSTRACT

The ASF Science division has released the world's first free end-to-end interferometric
digital  elevation  model  (DEM) generation  system.   This  software,  which processes  from raw
signal  data  through  to  a  map-projected,  ground-range  20m  DEM,  is  completely  automated.
Preliminary comparison with differential  gobal positioning system (GPS) indicates that over  a
100km swath, horizontal position errors are less than 120m, and comparison with the 2x3 arc
second United States Geological Survey (USGS) DEM indicates an average vertical error of 7m,
25m RMS. This result was obtained from an ERS tandem pair over Delta Junction, Alaska. These
advances in accuracy are due to use of precision timing and orbital data in an interferometric SAR
processor using an average doppler, precise baseline refinement, and direct ground rectification.
The computationally intensive nature of these algorithms was minimized through the creation of a
parallel SAR processor and a linearized ground rectification procedure.

1. INTRODUCTION

Spaceborne synthetic aperture radar (SAR) satellites have given rise to sar interferometry,  one of the most
exciting  remote  sensing  techniques  of  the  twentieth  century.  Satellite  radar  interferometry  has  been  applied
successfully to topographic mapping, to detecting, surface motion of earthquakes, volcanoes, glaciers, ice streams,
and to applications of forestry and agriculture. In this paper, recent advances are discussed in the development of
satellite radar interferometry user tools at the Alaska SAR Facility in support of the NASA Mission to Planet Earth
(MTPE). The Alaska SAR Facility (ASF) was established by NASA as a satellite receiving, processing and analysis
facility located at the Geophysical Institute, University of Alaska Fairbanks. ASF is responsible for scheduling all
the U.S. data requests for ERS-1, ERS-2, JERS-1, and RADARSAT data. In the fall of 1994, the Polar DAAC
Advisory  Group (PoDAG) charged the Science Division of the Alaska SAR Facility with the responsibility  of
developing and supporting SAR user tools for the SAR user community. The initial focus was to support SAR
products provided by the Alaska SAR Facility.  This interferometric software package is a direct  result of that
direction.

The European Space Agency (ESA) operated two polar orbiting SAR satellites, ERS-1 and ERS-2 during the
period of August 1995 through May 1996 in a one-day trailing tandem orbit to map extensive land surfaces. Each
satellite imaged the same land surface in a 35-day repeat orbit to obtain global coverage. During this period, ESA
performed orbital maintenance sufficient to achieve over 70% success in obtaining baselines which were suitable for
SAR interferometric mapping. A sizable collection of tandem mission data was acquired at the Alaska SAR Facility
and at McMurdo Station, Antarctica. To take advantage of this, ASF has been working to develop and promote
scientific applications of SAR interferometry. 

In the winter of 1996, the first version of a digital elevation model production capability was released. This
prototype used ERS-1 and ERS-2 complex image products produced at ASF. Since that time, facility staff have
established strong working relationships with engineering experts in the field including Howard Zebker of Stanford
University,  and researchers at the Jet  Propulsion Laboratory.  To process  ASF computer compatible signal data
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(CCSD) requires a software correlator, i.e.,  a matched filter image signal processor  code which compresses the
extended  ground  echo  returned  by  the  radar.  Based  on  a  Fortran  code  of  Howard  Zebker,  [Zebker,  94]  a  C
implementation of a software correlator was developed. This new code, which we call AISP, is capable of producing
full framed complex products. Interferometry algorithms used in our first prototype were enhanced in several areas
in order to process the resulting full frame complex products. Full ERS-1 raw telemetry data was used to insure
maximum accuracy and to measure and compare precision timing, orbit and other critical processing parameters
needed for accurate ground rectification. C.K. Shum [Kozel, 94] of the University  of Texas at Austin provided
precision orbit  data for  tandem pairs  over Delta Junction,  Alaska.  This paper describes the algorithms used to
produce a geocoded digital elevation model of the Delta Junction area. Error analysis was also performed.

2. BACKGROUND

Synthetic aperture RADAR (SAR) is a remote sensing technique with a number of useful peculiarities.  It
works by emitting a coherent (completely in phase) radar pulse toward the ground and listening for the echo of
objects on the ground.  Objects which scatter the incoming radar pulse better show up as brighter pixels.  One of the
most widely touted benefits of this technique is that these radar waves travel through cloud cover.  In addition,
because the SAR provides its own illumination, imaging is not dependent on the daylight. But possibly the most
useful aspect of SAR coherence is that the return signal contains information not only about the amplitude of the
echo, but also its phase.  Recall that for a periodic wave, the maximum height of a wave is its amplitude. The
relative position, or amount of shifting, is the phase (usually measured in angular units of degrees or radians).

The field of interferometry concerns itself with extracting information from phase differences.  From a set
of  two SAR images,  it's  possible  to  determine  elevation,  find  the  velocity  of  slow-moving  objects,  or  detect
minuscule surface changes.  The basic technique used is to take one SAR image of an area, then take another SAR
image of the same area,  and subtract  the phase at  each pixel.  An intensity plot of  the phase difference shows
contours at multiples of one phase cycle (360° or 2  radians). These are referred to as fringes. Since the radar'sπ
phase changes regularly as it propagates, the phase at any particular pixel then shows the difference in round-trip
path length between the two images (see Fig. 1). The resulting "interferogram" can be analyzed to determine a
variety of characteristics of the imaged area.  This interferogram analysis is complicated by several factors, such as
the  fact  that  phase  information  can  only  be  obtained  between  0  and  360  degrees  (modulo  2 ), and  is  henceπ
ambiguous. Finding a discriminant to resolve this ambiguity is called phase unwrapping.

If  the  two images  were  taken  from exactly  the  same place,  any  change  in  the  interferogram can  be
attributed to a change of the surface. Because the radar waves used in typical SARs such as RADARSAT have a
wavelength of about 5  centimeters,  it  is  possible  to  detect surface movements of  1 cm or  less.  By creating an
interferogram from SAR images taken before and after the 1992 Landers earthquake, the French Centre National
D’Etudes Spatiales (CNES) was able to create an image of the elastic deformation of the ground caused by the
earthquake [Messonnet,  92].  By interfering images of a glacier taken several days apart,  we can determine the
velocity and velocity profile of the glacier [Fatland, 94].

Because they are taken from space, the two SAR images are almost never taken from exactly the same
place.  When the two satellites are separated by some distance (this distance is usually separated into along-look and
across-look components, and then referred to as a baseline), the resulting interferogram contains a rather unexpected
effect.  Since the interferogram is extremely sensitive to total path length changes, and since the path length depends
on the elevation of the imaged point (see Figure 1), we can invert to solve for the elevation of each imaged point
from the interferogram.  The geometry works out such that the smaller the distance between the satellites (the
smaller the baseline), the smaller the effect of elevation on phase.  For longer radar wavelengths (employed, for
example, by the Japanese JERS-1), the effect of elevation on phase is also smaller, because one cycle of phase
represents more path distance.
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Figure 1: Interferometric SAR Geometry

3. PROCESSING METHODOLOGY

The overall processing scheme is shown in Figure 2.  The input SAR scenes are processed and registered with
one another, then an effective baseline is found using ground control points.  The baseline is used to create and map
the unwrapped phase into a DEM, which is finally map-projected.

                
Figure 2: Software Flow Diagram

The CCSD products provided by ASF include decoded and byte aligned data which come from the raw 5-bit I
and  5-bit  Q  signal  data.  These  products  are  accompanied  by  metadata  which  fully  characterizes  the  product
including  critical  processing  parameters  such  as  the  slant  range  to  first  pixel,  precision  timing,  and  satellite
ephemeris. AISP performs range compression by a matched filter correlation of the scattered return with the original



outgoing radar chirp. It then performs range cell migration correction, and synthesizes aperture by a matched filter
correlation of each line of data with the azimuth reference function. As  output, we get a single-look complex format
image. We can process to constant, linear, or quadratic approximation of the doppler shift and rate. The procedure
supports  both  automatic parameter  generation from metadata as a  preprocessing  step or  will  use an externally
specified set of processing parameters.

For interferometric processing of a tandem pair of SAR images, the doppler value for each image should be
estimated and then averaged [Madsen, 1989]. The first image is then processed to the average doppler without any
offsets being applied in the image formation. Portions of the top and bottom of the second image are processed to
the same average doppler frequency,  and then coregistered to sub-pixel accuracy.  The information thus obtained is
then used to reprocess the second image. The result is two complex format images which are registered to sub-pixel
accuracy. Because SAR processing is so computationally intensive, this is the slowest part of our interferometry
process.  On our Sun Microsystems SPARCserver 1000, processing one full frame 5,120 sample by 24,000 line
image using our processor (AISP) takes 3 hours. To speed this up, we have developed a parallel implementation of
our  SAR  processor  (PAISP).  Running  on  56  processor  elements  of  the  University  of  Alaska  Arctic  Region
Supercomputing Center’s Cray T-3E massively parallel supercomputer, we can process the same image in under 2
minutes.

Once the two full frame complex images have been accurately co-registered, they can be interfered with one
another and vector-averaged (i.e. multilooked). During co-registration, our software produces an estimate of the
satellite baseline through use of the satellite state vectors supplied in the CCSD metadata. While these state vectors
are accurate to a few meters, interferometry is extremely sensitive to the baseline distance - to as little as a few
centimeters  - which is not yet feasible with current tracking data. Hence, we must use geographic tie-points to
indirectly determine the true baseline. Thus the user creates a file of seed points of known position and elevation
picked from the amplitude image (see fig. 3A). The unwrapped phase information is then compared with these user-
input parameters, and the baseline is refined according to the difference. This process usually converges within three
iterations to less than millimeter-scale differences in baseline parameters.

The  unwrapped phase  [Goldstein et  al.  1988]  and correctly  refined baseline are  then  used  to  generate an
elevation image. Each pixel of the image represents the height above sea level, in meters, of each location on the
ground. The entire process between interferogram generation and elevation image generation takes about an hour
elapsed time. The resulting slant-range height image is not yet corrected for the curvature of the earth or look angle
of the spacecraft   and is  still  oriented with the raw SAR image (i.e.  not  geolocated).  The look angle skew is
especially visible in mountains, which lean toward the spacecraft in classic SAR foreshortening. Since layover,
shadowing,  and  lack  of  phase  coherence  create  unresolvable  ambiguities  in  our  slant-range  height  image,  the
resulting DEM will have regions, “holes”, where we have no information about the elevation.  The phase coherence
and phase unwrapping masks shown in figure 3c and 3d give visual indicators of how well the unwrapping process
should, and did, go (respectively). 
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Figure 3A: Tie point locations  3B: phase image  3C: phase coherence image  3D: phase unwrapping mask

The straightforward approach to terrain-correcting geometric distortion in a DEM is to use vector analysis to
solve for the arc length from sea level to target and so obtain ground range. Since this approach is very slow, we use
a range shift due to earth curvature, combined with a nearly linear shift in range on the basis of the elevation of the
target point. This simplified linearized method results in worst-case millimeter-scale differences from the original
for the Delta Junction scene, and a result of linearization, our SPARC 1000 converts a 100 MB, 5120x4800 pixel
slant-range height image into a pseudo-ground rectified DEM in about two minutes.

Having removed the elevation effects from a SAR DEM or amplitude image, we can now efficiently register
this image to a map projection of our choice. We define a mapping function between slant-range image space and
the map projection coordinates by defining a uniform grid of geographic tie-points (we use a 10 by 10 grid) on the
image, computing the latitude and longitude of each point, converting these coordinates to the map projection, and
fitting a polynomial function to the tie-points.  The pseudo-ground rectified DEM is then mapped into a ground
rectified DEM (or cartographic product), as shown in figure 4. Our tie-point procedure is completely automated and
can register a SAR derived DEM to any of 20 map projections in approximately three minutes on the SPARC 1000.

 


