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Abstract

If T is a set of vertices of a graph G, then T is k-sparse in G if the subgraph
of G induced by T' has maximum degree at most k. Following Ekim & Gimbel [4],
we define generalized Ramsey numbers: Ry(a,b), for nonnegative integers k, a, b,
is the least n such that, for each graph G of order n, either G' contains a k-sparse
set of a vertices, or the complement of G contains a k-sparse set of b vertices. We
study Ry, proving basic properties and bounds.

We compute various values of Rj. We show that, if a > 2 and k > 3a — 6, then
Ri(k+ a,k+ a) = k + 3a — 4. We compute other specific values of Ry(a,b), some
using a computer. In particular, we determine Rj(a,b) for all k, a, b for which this
value is at most 12.

We also analyze certain asymptotic behaviors of R;. We show that, for fixed a,
b, the value of Ri(k+ a,k +0b) is k+ O(1). We further show that, for fixed k, the
value of log Ry (a,a) is O(a).

1 Introduction

Let k be a nonnegative integer. Given a (finite, undirected) graph G, a set T' of vertices
of G is k-sparse in G if the subgraph of GG induced by T" has maximum degree at most k.
Some authors refer to a k-sparse set as “k-dependent”. A O-sparse set is the same as an
independent set.



Following Ekim & Gimbel [4] we define generalized Ramsey numbers: Ri(a,b) is the
least n such that, for each graph G of order n, either G contains a k-sparse set of a
vertices, or G contains a k-sparse set of b vertices. Note that that values of Ry are the
usual 2-color Ramsey numbers.

Note that the function Ry can be thought of in a graph Ramsey number context. If
A, B are sets of graphs, then R(A, B) is the least n such that, for each graph G of order
n, either G contains a subgraph isomorphic to an element of A, or G contains a subgraph
isomorphic to an element of B. Say a graph H is k-dense if V(H) is k-sparse in H. Let
A be the set of all k-dense graphs on a vertices, and let B be the set of all k-dense graphs
on b vertices. It is not hard to see that Ry(a,b) = R(A, B).

Thus, when we find values of Ry, we are also determining more traditional graph
Ramsey numbers.

Such reasoning has been used, for example, by Cockayne & Mynhardt [3, Cor. 3(iii)],
to determine R;(5,5). The 4-spoke wheel, Wy, is 1-dense. Further, every 1-dense graph of
order 5 has a subgraph isomorphic to Wy. Thus, R;(5,5) = R(Wy, Wy). Cockayne & Myn-
hardt reference Harborth & Mengersen [9, Thm. 2], who showed that R(W,, W) = 15.
(That R(Wy, W,) = 15 was also stated without proof by Hendry [10]; see Radziszowski [11,
Sect. 4.2].)

In this paper, we study Rj. In Section 2, we list previously known values of Ry.
In Section 3, we give basic properties and bounds on R;. In Section 4, we analyze the
behavior of Ry(k+a, k+0b), when a, b are fixed and k increases. In Section 5, we compute
various values of Ry, including nontrivial infinite families of values, as well as some values
determined using a computer. In Section 6, we continue our discussion of asymptotic
behavior of Ry. We turn our attention to Ry(a,a) when k is fixed and a increases.

For a graph G, we denote the vertex set of G by V(G). If T' C V(G), then G[T] is the
subgraph of G induced by T

2 Previously Known Values

The following table shows the known values of Ry(a, b)—that is, ordinary 2-color Ramsey
numbers—for 1 < a,b < 11. See the survey by Radziszowski [I1, Sect. 2.1]. We use the
obvious facts that Ry(1,b) =1 and Ry(2,b) = b; see Lemma [3.If) and (g).



Ryl 2 3 4 5 6 7 8 9 10 11
i1fj1r 1 1 1 1 1 1 1 1 1 1
211 2 3 4 5 6 7 8 9 10 11
311 3 6 9 14 18 23 28 36
411 4 9 18 25

o1 5 14 25

611 6 18

717 23

8|1 &8 28

911 9 36

1011 10

1111 11

The following table shows the known values of Ri(a,b), for 2 < a,b < 10. These are
from Cockayne & Mynhardt [3]; also see Ekim & Gimbel [4]. We also use the facts that
Ri(2,b) =2 and R;(3,b) = b; see Lemma [3.1(f) and (g).

Ry2 3 4 5 6 7 8 9 10
212 2 2 2 2 2 2 2 2
312 3 4 5 6 7 8 9 10
412 4 6 9 11 16 17
512 5 9 15

612 6 11

T2 7 16

812 &8 17

912 9

1012 10

The following table shows the previously known values of Rs(a,b), for 3 < a,b < 7.
Of these, one nontrivial value was known before this work: Ry(5,5) = 7, from Ekim
& Gimbel [4, Thm. 3]. We also use the facts that Ry(3,b) = 3 and Ry(4,b) = b; see

Lemma [3.1)f) and (g).

Ry |3 4 5 6 7 8
313 3 3 3 3 3
413 4 5 6 7 8
213 5 7
6|3 6
T3 7
813 8

In Section 5 we will add to the above table.



3 Basic Properties

The following lemma gives basic properties of k-sparseness and Rj. Some parts of the
lemma—(b), (e), (f), and special cases of (g)—were observed by Ekim & Gimbel [4]
Remarks 2, 3, 5-7] and Cockayne & Mynhardt [3, Prop. 1, Cor. 3(i)].

Lemma 3.1. Let k, a, and b be nonnegative integers. Then the following all hold.
(a) Let G be a graph, and let T C V(G) with |T| < k+ 1. Then T is k-sparse in G.

(b) Let G be a graph, and let T C V(G) with |T| =k + 2. Then either T is k-sparse in
G, or T is k-sparse in G.

(¢) Let G be a graph, and let T C V(G). Then T is k-sparse in G iff every (k+2)-subset
of T' is k-sparse in G.

(d) Rk+1(a, b) S Rk(a, b)

(e) Ri(a,b) = Ry(b,a).

(f) Ifa<k+1orb<k+1, then Ri(a,b) = min{a, b}.
(9) Rp(k+2,b) =b.

Proof. (a) This is obvious.

(b) If T is not k-sparse in GG, then some = € T is adjacent to k + 1 other vertices of T,
that is, to all other vertices of 7. Thus, in the subgraph of G induced by T, = has degree
0, and every other vertex of T" has degree at most k, since each such vertex is not adjacent
to x. Therefore, T is k-sparse in G.

(c) Clearly, if T" is k-sparse in G, then every (k + 2)-subset of T is k-sparse in G.

If T is not k-sparse in GG, then some x € T' is adjacent to at least k + 1 other vertices
of T. Let U C T consist of x and k + 1 of its neighbors. Then U is a (k + 2)-subset of T
that is not k-sparse in G.

(d) This follows from the fact that every k-sparse set is also (k + 1)-sparse.

e) This is obvious.

(

(f

(g) If b < k + 1, then the result follows from part (f). Therefore, suppose that b > k + 2.
Consider K;_1. This graph does not contain a k-sparse set of order k+2. Furthermore,

since its order is less than b, there can be no set of b vertices that is k-sparse in the

complement. Thus, Ry (k + 2,b) > b.

Now let G be a graph of order b containing no k-sparse set of order k + 2. By part

(b) every (k + 2)-vertex subset of V(G) is k-sparse in G. Therefore, by part (c), V(G) is
a b-vertex set that is k-sparse in G, and so Ri(k+2,b) <b. O

)
)

This follows from part (a).



The following lemma gives simple bounds for Ry. Part (b) generalizes a result of Burr,
Erdés, Faudree, & Shelp [Il, Thm. 2], who proved it for £ = 0. Part (c) was observed by
Ekim & Gimbel [4, Remark 4].

Lemma 3.2. Let k, a, b, ¢ be nonnegative integers. Then the following hold.
(a) If a>1 and b > k + 2, then Ri(a,b) > Ri(a —1,b) + 1.
(b) If a > 2k +1 and b,c > 1, then Ri(a,b+c—1) > Ri(a,b) + Ry(a,c) — 1.
(¢) If a,b> 1, then Rg(a,b) < Rg(a —1,b) + Ri(a,b—1).

Proof. (a) If a = 1, then the statement follows from Lemma [3.1ff).

Suppose a > 2. Let n = Rig(a — 1,b) — 1. Note that n > 0. Let G be a graph of
order n, such that G' contains no (a — 1)-vertex k-sparse set, and G contains no b-vertex
k-sparse set.

Let G* be G with an additional isolated vertex x added. Then G* has order n + 1 =
Ri(a—1,b), and G* contains no a-vertex k-sparse set. If n < k+1, then, since b > k+ 2,
the graph G* has order less than b, and so it can contain no b-vertex k-sparse set. On the
other hand, if n > k + 1, then adding x to some (b — 1)-vertex k-sparse set in G results
in a set inducing a subgraph in which 2 has degree greater than k. Thus G* contains no
b-vertex k-sparse set.

We conclude that Rj(a,b) is greater than the order of G*; the statement follows.

(b) Let Gy be a graph of order Ry(a,b) — 1 such that G has no k-sparse a-set, and G
has no k-sparse b-set. Similarly, let G5 be a graph of order Rg(a,c) — 1 such that Gy has
no k-sparse a-set, and G has no k-sparse c-set. Let G be the graph formed by taking the
disjoint union of G; and G, and adding all edges between vertices in (G; and vertices in
GQ.

Graph G has order Ry(a,b)+ Ri(a,c) —2. We claim that G has no k-sparse a-set. To
see this, let S C V(G) with |S| = a. If S lies entirely in either G; or Gj, then S is not
k-sparse. Thus, since a > 2k 4+ 1, set S must contain at least k + 1 vertices of either G,
or GGy, and it must contain a vertex v in the other ;. This vertex v thus has degree at
least k£ + 1 in the subgraph of G induced by S. We see that .S is not k-sparse.

Further, G has no k-sparse (b + ¢ — 1)-set, since any (b + ¢ — 1)-set in V(G) must
contain either b vertices of G or ¢ vertices of G4, in which case it is not k-sparse in G.

We conclude that Ry(a,b+c—1) is greater than the order of G; the statement follows.

(c) Let n = R(a—1,b)+Ri(a,b—1), and let G be a graph of order n. Let x € V(G). Then
either = has at least Ry(a — 1,b) non-neighbors or = has at least Ri(a,b — 1) neighbors.
We consider the former case; the other is handled similarly.

Let T be the set of non-neighbors of x. If T" has a b-vertex subset that is k-sparse in
G, then we are done. Otherwise, 7' must have an (a — 1)-vertex subset U that is k-sparse
in G. Then U U {z} is an a-vertex set that is k-sparse in G. [

It seems likely that part (b) of Lemma holds for smaller values of a, perhaps for
a>k+ 2.



4 Asymptotic Behavior I

In the following proposition, we use Lemma to establish bounds on Ry(k + a,k + b)
in terms of k, a, and b.

Proposition 4.1. Let k > 0, and let a,b > 2. Then the following hold.
(a) Re(k+a,k+b)>k+a+b-2.
(b) Re(k+a,k+0b) < (aﬁ;l)k' n (a+b—2)'

a—1

Proof. (a) We proceed by induction on a. In the base case, a = 2. We need to show that
Ri(k+2,k+b) >k + b. This follows from Lemma [3.1|g).
If @ > 2, then we apply Lemma [3.2(a) to obtain

Ry(k+a,k+b) > Rp(k+a—1,k+b)+1
>(k+a+b-3)+1
=k+a+b—2.

(b) We proceed by induction, first on a, and then on b. If a = 2, then the right-hand side
of the inequality equals k + b, and we need to show that Ry(k + 2,k +b) < k + b. This
follows from Lemma (g) The inequality similarly holds when b = 2.

Now assume that a,b > 3, and that the inequality holds for all smaller values of a
and, with the given value of a, for all smaller values of b. Apply Lemma [3.2(c) to obtain

Ri(k+ak+b) < Rplk+a—1,k+b)+ Rp(k+a,k+b—1)
a+b—>5 a+b—-3 a+b—>5 a+b—3
< k k
<[ ) () ) (00
_ (a+b_4)k:+ (a+b—2). O
a—2 a—1
Proposition implies that, for fixed a, b, the value of Ry(k + a,k + b) is ©(k). We
will prove a stronger statement: that this value is & + O(1)—thus showing that part

(b) of Proposition is far from best possible. We begin by finding exact formulas for
Ri(k + a, k + a) when k is sufficiently large.

Theorem 4.2. Let k,a > 0. Then the following hold.
(a) If k > a — 3, then Ry(k +a,k+a) > k+ 3a — 4.
(b) If a > 2 and k > 3a — 6, then Ri(k+a,k+a) =k+ 3a —4.

Proof. (a) If a = 0,1, then the statement follows from Lemma [3.1(f). If a = 2, then the
statement follows from Lemma [3.1g).

Suppose that @ > 3 and k > a — 3. Define a graph Dy, as follows. Let P, @), R be
disjoint sets of vertices with |P| = |Q| = 2a — 4 and |R| = k — (a — 3). Let the vertex
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set of Dy, be PUQ U R. Add edges: let the edges between sets P, () form a regular
bipartite graph with degree a — 2. Let each vertex of () be adjacent to every other vertex
of @ and every vertex of R. This defines Dy, ,. Note that P U R is an independent set in
Dy, while () induces a complete subgraph.

Dy, o has order (2a —4) + (2a —4) + [k — (a — 3)] = k + 3a — 5. Thus, to obtain a set
of k + a vertices of Dy ,, we would remove 2a — 5 vertices.

Let S C V(Dy,) with |S| = k4a. The set @) contains 2a—4 vertices. Thus, S contains
at least 1 vertex of ). Each vertex in ) has degree (a — 2) + (2a — 5) + [k — (a — 3)] =
k + 2a — 4. Thus, the subgraph of Dy, induced by S has a vertex of degree at least
(k+2a—4)—(2a —5) =k +1, and so S cannot be k-sparse in Dy, ,.

Similarly, the set P contains 2a — 4 vertices. Thus, S contains at least 1 vertex of P.
Each vertex in P has degree a — 2. Thus, the subgraph of Dy, induced by S has a vertex
of degree at most a — 2, which has degree at least (k +a—1) — (a —2) =k + 1 in Dy,.
Hence, S cannot be k-sparse in Dy ,.

We see that Dy, , is a graph of order k+3a—5 such that neither Dy, , nor its complement
has a k-sparse set of k + a vertices. Statement (a) follows.

(b) Because a > 2 and k > 3a — 6, we have k > a — 3, and so we can apply part (a). It
remains to show that Ry(k + a,k + a) < k + 3a — 4. Suppose for a contradiction that
this is false. Then there must exist a graph G with order k 4+ 3a — 4, such that each
(k4 a)-vertex subset of V(G) is k-sparse in neither G nor G. That is, each (k + a)-vertex
subset of V(@) induces a subgraph of G having a vertex of degree at least k£ + 1 and a
vertex of degree at most a —2 = (k+a—1)— (k+1).

We say a vertex v is strong in G if there exists some (k + a)-vertex induced subgraph
of G in which v has degree at least k 4+ 1. Thus v is strong in G iff the degree of v in G
is at least k + 1.

We say a vertex v is weak in G if there exists some (k + a)-vertex induced subgraph
of G in which v has degree at most a — 2. Thus v is weak in G iff the degree of v in G is
at most 3a —6 = (a—2)+ [(k+3a—4) — (k+ a)].

Note that £+ 1 > 3a — 6, and so no vertex can be both strong and weak in G. (Note:
This is why we need k > 3a — 6.)

There must exist at least 2a — 3 weak vertices, since, otherwise, we can remove 2a — 4
vertices (noting that 2a — 4 > 0, since a > 2), leaving a set of k + a vertices, none of
which is weak in G. Such a set would be k-sparse in G.

We say a vertex v that is weak in G is special if v is adjacent to at most a — 2 strong
vertices in GG. If we remove 2a — 4 weak vertices from G, then the resulting induced
subgraph has order k£ + a, and so must contain a vertex x of degree at most a — 2. Since
we only removed weak vertices, and no weak vertex is strong, the subgraph must contain
every strong vertex of GG, and so x is a special weak vertex. Since we can remove any
collection of 2a — 4 weak vertices of G and find a special weak vertex in what remains, G
must contain at least 2a — 3 special weak vertices.

Let S C V(G) be a set of 2a — 3 special weak vertices. Let 7' C V(G) be the set of
all strong vertices of G that are adjacent to more than a — 2 vertices of S. Note that 5,
T are disjoint. Because each vertex in S is adjacent to at most a — 2 strong vertices, we



have |T'| < |S| =2a — 3, and so |V(G) = T| > k + a.

Let U be a set of k + a vertices of G, such that S C U C V(G) —T. Such a set U
exists, because a — 3 < k, and so |S| = 2a — 3 < k + a = |U|. We claim that this U is
k-sparse (which would be a contradiction). To see this, consider a vertex z € U. If z is
not strong in G, then z has degree at most k. If z is strong in G, then, since z € T', 2
is adjacent to at most a — 2 vertices of S. There are (k+a) —(2a —3) —1=k—a+2
vertices of U, other than z, that do not lie in S. Thus, in the subgraph of GG induced by
U, vertex z has degree at most (a — 2) 4+ (k — a + 2) = k. We see that U is k-sparse.

By contradiction, statement (b) is proven. [

Using Theorem [4.2] we can show that, for fixed a, b, the value of Ry(k + a,k + b) is
k+O(1).

Corollary 4.3. For each pair of integers a, b, there exist constants £, and u.p so that
€a7b S Rk(k’ +CL,/{I + b) -k S Uq,b
for all k > 0 for which Rx(k + a,k +b) is defined.

Proof. Fix integers a, b. Without loss of generality, say a > b. If b < 2, then the result
follows from Lemma (f), with £, = uap = b.
Suppose that b > 2; then a > 2 as well. Let ¢, 3, u,, be defined as follows.

lop =a+b—2;
Ugp = max [Ry(k+a,k+a)—Fk|.
0<k<3a—6

The lower bound now follows from Proposition {4.1(a). We consider the upper bound.
Note that u,; is well defined, since we take the maximum value of a nonempty finite set.

By Lemma [3.2{(a), since a > b, we have Ry(k + a,k 4+ b) < Ry(k + a,k + a). It thus
suffices to show that Ry(k + a,k + a) — k < ugp. When k < 3a — 6 this follows from the
definition of ugyp. If £ > 3a — 6, then we have

Ri(k+a,k+a) —k=3a—4 by Theorem 4.2(b)
= Rs,—6([3a — 6] + a,[3a — 6] + a) — [3a — 6] by Theorem [4.2|b)
< Uq,b- O

It appears that, for fixed a,b > 0, the value Ri(k + a,k + b) — k is maximized when
k =0, and thus that we can set u,, = R(a,b) in Corollary [£.3]

Conjecture 4.4. If k,a,b > 0, then Ry(k + a,k +b) — k < R(a,b). O
Conjecture [£.4 would follow from the following stronger conjecture.

Conjecture 4.5. For fized integers a, b, the sequence of values of Ry(k+a,k+0b) — k is
nonincreasing. [

We will discuss asymptotic behavior again later, in Section 6, after we determine a
number of previously unknown values of Ry.
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5 Specific Values

Using Theorem [4.2] we can establish, for each k, the first nontrivial value of Ry. That is,
we find the first value that is not given by Lemma [3.1}

Corollary 5.1. Let k > 0. Then,

6, if k=0,
Ro(k+3,k+3) =
il ) {k + 5, otherwise.
Proof. When k = 0 we use the well known result that R(3,3) = 6 (noted by Greenwood
& Gleason [8, p. 3]). The case k = 1 was proven by Cockayne & Mynhardt [3, Cor. 3(ii)].
The case k = 2 was proven by Ekim & Gimbel [4, Thm. 3.
When k > 3, we set a = 3, note that k > 3a — 6, and apply Theorem [4.2(b). O

Now we determine a number of previously unknown individual values of Ry (a,b). We
will give the full proof for one value: Ry(5,6) = 8. For the others, we give proofs for the
lower bounds; the upper bounds were verified using a computer.

Theorem 5.2. Ry(5,6) = 8.

Proof. For convenience, we will actually prove that Ry(6,5) = 8. The lower bound follows
from Lemmal[3.2|(a) and the fact that Rs(5,5) = 7 (proven by Ekim & Gimbel [4, Thm. 3]).

For the upper bound, suppose for a contradiction that there exists a graph G of order
8, such that there is no 2-sparse set of order 6 in (=, and there is no 2-sparse set of order 5
in G. We note that G can contain neither a 5-cycle nor Ks 3 as a subgraph (not necessarily
induced), for otherwise G would contain a 2-sparse set of order 5.

Maximum Degree at Most 3—We claim that G has maximum degree at most 3.

Suppose for a contradiction that G has a vertex v of degree at least 4. Let S C V(G)
be a set of 4 vertices that belong to the open neighborhood of v. Let T' = V(G) — [SU{v}];
note that |T'| = 3. The S-degree of a vertex that does not lie in S, is defined to be the
cardinality of the intersection of its open neighborhood with S. Say T = {x,y, z}, with
the S-degree of x being at least that of y, which, in turn, is at least that of z.

As G does not contain a 5-cycle, we see that G[S] cannot contain a path on four
vertices. As G does not contain K 3, we see that S is 2-sparse. Thus, G[S] is isomorphic
to a subgraph of either K3 U K7 or Ky U K.

S-Degree at Most 1. We wish to show that, for S, T" defined above, each vertex in T
has S-degree at most 1. If x has S degree 3 or more, then G contains a Ky3. We may
thus assume that every vertex in 7" has S-degree at most 2.

Suppose that z has S-degree exactly 2. Then the 2 neighbors of z in S might be
adjacent, but cannot be adjacent to other vertices of S, for otherwise G would contain a
5-cycle. In particular, S must be 1-sparse in G.

Suppose that y also has S-degree exactly 2. Then, as G contains no 5-cycle, = and
y must be nonadjacent. As G does not contain a Ky 3, we see that x and y cannot have
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exactly the same neighborhood in S. If z and y have a common neighbor in S, then S is
an independent set, and S U {x,y} forms a 2-sparse set of order six. On the other hand,
if x and y each have S-degree 2, but share no common neighbor, then S U {z,y} induces
a subgraph of two disjoint triangles, and hence is 2-sparse. We see that y has S-degree at
most 1.

If y and 2z have a common neighbor w € S, then neither y nor z can be adjacent to z,
since G contains no 5-cycle, and so (SUT) —{w} is a 2-sparse 6-set. On the other hand,
if there is no such w, then S U {y, z} is a 2-sparse 6-set.

Thus, we have shown that each vertex of T has S-degree at most 1.

Finishing the Maximum Degree 3 Proof. We now complete the verification of our
claim that G has maximum degree at most 3. Recall that G[S] is isomorphic to a subgraph
of either K3 U K; or Koy U K.

We wish to show, first, that there is at most 1 vertices in G[SUT] with degree at least
4, and, second, that if 2 vertices in G[sUT| have degree at least 3, then they are adjacent.

For the first part, note that S, T are each 2-sparse. Thus, any vertex lying in one of
these sets and having degree at least 4 in G[SUT], must be adjacent to at least 2 vertices
in the other set. Since there are at most 3 edges between S, 7', there can be only 1 such
vertex.

For the second part, let a, b be vertices of degree at least 3 in G[S UT]. Suppose that
a€T. IfbeT, then G[T] is K3, and so a, b are adjacent. On the other hand, if b € S,
then a must be adjacent to both other vertices of T'. Since GG contains no 5-cycle, there
can be only one vertex in S that is adjacent to a vertex of T'. This vertex must thus be
b, and so a, b are adjacent.

Now suppose that a,b € S. Then one of the two has degree at least 2 in G[S], while
the other has degree at least 1. Considering the possible isomorphism classes of G[S], we
see that a, b must be adjacent.

The first and second parts, above, having been verified, we conclude that removing a
vertex of maximum degree from G[S U T leaves a 2-sparse set of 6 vertices.

Thus, our claim holds: G has maximum degree at most 3.

Triangle Free—We claim that G is triangle-tree.

Suppose for a contradiction that G contains a triangle. Let N be the set of vertices
that do not lie in the triangle, and have at least one neighbor in the triangle. Because G
has maximum degree at most 3, each vertex in the triangle has at most 1 neighbor in N,
and so |[N| < 3. If |[N| < 2, then the vertices of the triangle together with 3 other vertices
that do not lie in N, form a 2-sparse 6-set. Thus |[N| = 3, and so there is a matching
between the triangle and N.

Let u, v be the 2 vertices of G in neither the triangle nor in N. As G contains no
5-cycle, neither u nor v can have more than 1 neighbor in N, and G[N] can have no edges.
If v and v have a common neighbor, say w, then the removal of the neighbor of w in the
triangle leaves a 2-sparse set. On the other hand, if v and v do not share a common
neighbor, then the removal of any vertex in the triangle leaves a 2-sparse set.

Thus, our claim holds: G is triangle-free.
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Handling a Bipartite Graph—Suppose that G is not bipartite. Then G contains an
induced odd cycle. As this cycle can be neither a triangle nor a 5-cycle, it must be an
induced 7-cycle, which is 2-sparse. We may thus assume that G is bipartite.

Let A, B be the partite sets of G, where |A| < |B|. As B is 2-sparse, we must have
|B| < 5. Accordingly, |B| € {4,5}.

We first consider the case |B| = 4.

Suppose that both A and B contain a vertex of degree 3. If these 2 vertices are
nonadjacent, then the removal of both vertices leaves a 2-sparse 6-set. Thus, each vertex
of degree 3 in A must be adjacent to each vertex of degree 3 in B. The removal of one
such vertex from A and one from B leaves a 2-sparse 6-set. We may thus assume, without
loss of generality, that A contains no vertices of degree 3.

The set B cannot contain 3 vertices of degree 3, since these would necessarily have a
common neighbor, which would be a vertex of degree 3 in A. Hence, we may remove 2
vertices of B to obtain a 2-sparse 6-set.

In our final case, we have |B| =5, and hence |A| = 3.

If B contains at least 2 vertices of degree 3, then G contains a Ky3. If B contains
exactly 1 vertex of degree 3, then the removal of this vertex leaves a 2-sparse set. Thus, B
contains no vertices of degree 3. If at most 2 vertices of A have degree 3, then we remove
them and produce a 2-sparse set. We may thus assume that all vertices of A have degree
3. Hence some vertex of B must have degree 2. Remove this vertex and its nonneighbor
in A; what remains is a 2-sparse set of 6 vertices.

This exhausts all cases. Thus, no such G exists; our desired conclusion follows. [J

Using a computer program, we have determined other values of Ry. Our software is
written in the Python programming language; it is available via the Worldwide Web [2].

We have also been able to enumerate the number of extremal graphs for these values
of Ri. A graph G is extremal for Ryi(a,b) if G has order Ry(a,b) — 1, G contains no

k-sparse set of a vertices, and G contains no k-sparse set of b vertices. Informally, G is
extremal if its existence shows that Ry (a,b) is at least its actual value.

Proposition 5.3. The following all hold.
(a) Rs(5,7) =10, with exactly 16 extremal graphs.

(b) Ry(5,8

2, with exactly 8 extremal graphs.

1
(c) Rs(6,6) =12, with exactly 2 extremal graphs.
9

, with ezxactly 28 extremal graphs.

(e) R3(6,8) =10, with exactly 159 extremal graphs.
(f) RS 679

(9) Rs(7,7) =11, with exactly 4 extremal graphs.

12, with exactly 4 extremal graphs.

(5,7)
(5,8)
(6,6)
(d) Rs(6,7)
(6,8)
(6,9)
(7,7)
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(h) R3(7,8) = 13, with exactly 43 extremal graphs.
(i) R4(7,8) = 10, with exactly 84 extremal graphs.
(j) R4(7,9) = 11, with exactly 550 extremal graphs.
) Rl
(1) Ra(
(
(
(
9,

7

7,10) = 13, with ezactly 4 extremal graphs.

8,8) = 12, with exactly 8 extremal graphs.

(m) R5(8,9) = 11, with ezactly 316 extremal graphs.
(n) Rs(8,10) = 12, with exactly 2430 extremal graphs.
(0) R5(9,9) = 13, with ezxactly 22 extremal graphs.
(p) R¢(9,10) = 12, with exactly 1712 extremal graphs.

The upper bounds were all verified using a computer program [2]. We give proofs for
the lower bounds.

Proof of Lower Bounds. (a) For the lower bound, we can use the following 9-vertex graph
G, which is extremal for Ry(7,5). Begin with a 6-cycle. Let S be an independent set of 3
vertices in this cycle. For each v € S, add a new vertex v' having the same neighbors as
v. Let G be the resulting graph.

Then G has no 7-vertex 2-sparse set and G has no 5-vertex 2-sparse set, showing that
RQ(?, 5) > 9.

(b) For the lower bound, we can use the following 11-vertex graph G, which is extremal for
R5(8,5). The vertex set of G is {1,2,3,a,b,¢,d, w, x,y, 2}, with edges as follows. Vertices
a,b,c,d induce a K,. Vertices w,z,y, 2z induce a Ky. Vertex 1 is adjacent to a and w.
Vertex 2 is adjacent to b and z. Vertex 3 is adjacent to ¢ and y.

Then G has no 8-vertex 2-sparse set and G has no 5-vertex 2-sparse set, showing that

(c) For the lower bound, we can use the following 11-vertex graph G, which is extremal for
Ry(6,6). The vertex set of G is {1,2,3,4,a,b,¢,d,t,x,y}, with edges as follows. Vertices
1,a,2,b,3,¢,4,d form an 8-cycle, in that order. The set {a,b,c,d,t} induces a K5. Each
vertex of {1,2,3,4} is adjacent to each vertex of {z,y}, and ¢ is adjacent to y.

Then G has no 6-vertex 2-sparse set and G has no 6-vertex 2-sparse set, showing that

R5(6,6) > 11.

(d) The lower bound follows from Lemma [3.2(a) and the fact that R3(6,6) = 8, by
Theorem [4.2{b)

() The lower bound follows from Lemma [3.2fa) and the fact that R3(6,7) = 9, from part
(d).

(f) For the lower bound, we can use the following 11-vertex graph G, which is extremal for
R5(9,6). The vertex set of G is {1,2,3,4,5,6,a,b,c,z,y}, with edges as follows. Vertices
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a,b,c, x,yinduce a K5. Vertices 1,2 are each adjacent to a. Vertices 3,4 are each adjacent
to b. Vertices 5,6 are each adjacent to c.

Then G has no 9-vertex 3-sparse set and G has no 6-vertex 3-sparse set, showing that

(g) The lower bound follows from Theorem [4.2(a).

(h) For the lower bound, we can use the following 12-vertex graph G, which is extremal
for R3(8,7). The vertex set of G is {1,2,3,4,5,a,b,¢,d,e, f,x}, with edges as follows.
Vertices a, b, c,d, e, f induce a Kg. Vertices 1, 2 are each adjacent to a and b. Vertices 3,
4 are each adjacent to ¢ and d. Vertex 5 is adjacent to e and f. Vertex z is adjacent to
1,2,3,4, 5, and 6.

Then G has no 8-vertex 3-sparse set and G has no 7-vertex 3-sparse set, showing that

(i) The lower bound follows from Lemma [3.2(a) and the fact that R4(7,7) = 9, by Theo-
rem [£.2|(b)

(j) The lower bound follows from Lemma [3.2|(a) and the fact that R4(7,8) = 10, from
part (i).

(k) For the lower bound, we can use the following 12-vertex graph G, which is extremal
for R4(10,7). The vertex set of G is {1,2,3,4,5,6,a,b,¢,x,y, z}, with edges as follows.
Vertices a, b, c, x,y, z induce a Kg. Vertices 1, 2 are each adjacent to a. Vertices 3, 4 are

each adjacent to b. Vertices 5, 6 are each adjacent to c.

Then G has no 10-vertex 4-sparse set and G has no 7-vertex 4-sparse set, showing that
R4(10,7) > 12.

(1) The lower bound follows from Theorem [£.2|a)

(m) The lower bound follows from Lemma [3.2(a) and the fact that R5(8,8) = 10, by
Theorem [4.2{b)

(n) The lower bound follows from Lemma [3.2(a) and the fact that R5(8,9) = 11, from
part (m).
(0) The lower bound follows from Theorem [£.2|(a)

(p) The lower bound follows from Lemma [3.2(a) and the fact that Rs(9,9) = 11, by
Theorem-

Remark 5.4. Using our computer program [2], we determined that there are exactly 13
extremal graphs for Ry(5,6). O

We can now update our tables of values of R;. Note that we have computed no new
values of Ry or R;.

The following table shows the values of Rs(a,b) that we have found, for 3 < a,b < 10.
These are from Lemma [3.1](f) and (g), Ekim & Gimbel [4, Thm. 3] (for Rx(5,5) = 7),
Theorem [5.2] and Proposition [5.3] Newly established values are shown in boldface.
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Ry 3 4 5 6 7 8 9 10
33 3 3 3 3 3 3 3
413 4 5 6 7 8 9 10
> 3 5 7 8 10 12
6| 3 6 8 12
73 7 10
8| 3 8 12
91 3 9
10| 3 10

The following table shows the values of R3(a,b) that we have found, for 4 < a,b < 11.

These are from Lemma[3.1|(f) and (g), Theorem [£.2(b), and Proposition[5.3] Again, newly
established values are shown in boldface.

Ry 4 5 6 7 8 9 10 11
41 4 4 4 4 4 4 4 4
>4 5 6 7 8 9 10 11
6| 4 6 8 9 10 12
T4 7 9 11 13
8| 4 8 10 13
91 4 9 12
10} 4 10
111 4 11

The following table shows the values of R4(a,b) that we have found, for 5 < a,b < 12.
These are from Lemma [3.1(f) and (g), Theorem [£.2b), and Proposition [5.3|

Ry| 5 6 7 8 9 10 11 12
2/ 5 5 5 5 5 5 5 5
6| 5 6 7 &8 9 10 11 12
75 7 9 10 11 13

8 5 8 10 12

91 5 9 11

10 5 10 13

11 5 11

12| 5 12

The following table shows the values of Rs(a,b) that we have found, for 6 < a,b < 13.
These are from Lemma [3.1{f) and (g), Theorem [£.2b), and Proposition [5.3]
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Ry 6 7 8 9 10 11 12 13
6| 6 6 6 6 6 6 6 6
76 7 & 9 10 11 12 13
8 6 &8 10 11 12
9/ 6 9 11 13
10} 6 10 12
111 6 11
121 6 12
131 6 13

The following table shows the values of Rg(a,b) that we have found, for 7 < a,b < 14.
These are from Lemma [3.1]f) and (g), Theorem [£.2b), and Proposition [5.3]

Rg| 7 8 9 10 11 12 13 14
L T Y (O (O (Y (Y (R
g 7 & 9 10 11 12 13 14
9/ 7 9 11 12
100, 7 10 12 14
11 7 11
12 7 12
13| 7 13
141 7 14

The following table shows the values of R;(a,b) that we have found, for 8 < a,b < 15.
These are from Lemma [3.1f) and (g), and Theorem [4.2|b).

R; 8 9 10 11 12 13 14 15
8 8 8 8 8 & & &8 B8
9/ 8 9 10 11 12 13 14 15
10 8 10 12

111 8 11 15

12| 8 12

131 8 13

14 8 14

151 8 15

Remark 5.5. We have determined Ry(a,b) for all k, a, b for which Ry(a,b) < 12. These
are the values corresponding to entries in the above tables that are at most 12, along with
other values that can easily be computed using Lemma [3.1)(f) and (g). O

6 Asymptotic Behavior II

Once again, we are interested in the behavior of Ry (k + a, k + b) when a, b are fixed and
k increases. We know the following, from Corollary [5.1]
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Ri(k+3,k+3) | value
Ro(3,3) 6
Ry(4,4) 6
Ro(5,5) 7
Rs(6,6) 8
Ru(7,7) 9
R5(8,8) 10

The values below are from Greenwood & Gleason [8, p. 4] (for Ry(4,4) = 18), Cockayne
& Mynhardt [3, Cor. 3(iii)] (for R (5,5) = 15), Proposition [5.3] and Theorem [4.2

Ry(k+4,k+4) | value
Ro(4,4) 8
Ri(5,5) 15
Ry(6,6) 12
Rs(7,7) 11
R4(8,8) 12
R5(9,9) 13

Rs(10,10) 14
R.(11,11) 15
Rs(12,12) 16
Ro(13,13) 17

More generally, we have the following.
Proposition 6.1. For all k > 0, we have the following.
(a) Ri(k+3,k+ 3) =max{6,5+ k}.
(b) Ri(k+4,k+4) =max{18 —3k,8+k}. O

In both cases above, the Ramsey number is the maximum of two polynomials of degree
at most 1 in k. Based on this, we indulge in wild speculation: does this continue to be
true for other Ry (k + a,k + a)? For other Ry(k + a,k +b)?

It appears that, for fixed a, there is a unique k, such that the values Ry(k + a,k + a)
are nonincreasing for £ < k,, and increasing for £ > k,. For example, we have k3 = 1 and
k, = 3. We ask about the behavior of this k,.

Question 6.2. Does this value k, exist for each a? If so, what is the behavior of k, as a
grows? [

We have discussed the behavior of Ry(k + a,k + b) when a, b are fixed and k grows
large. What about when £ is fixed and a, b increase? We establish bounds for the diagonal
values Ry (a,a). We will make use of the following theorem due to Erdés & Gimbel [6,
Thm. 3]. (Note that a statement almost surely holds, if the probability of it holding
converges to 1—in this case, as n — 00.)
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Theorem 6.3 (Erdés & Gimbel 1991 [0, Thm. 3]). Given a fized graph H and a random
graph G of order n, the largest H-free subgraph of G almost surely has cardinality less
than clnn where ¢ is dependent only on H. [

The following theorem generalizes a result of Erdés [5, Thm. 1], who proved it for
k=0 (with t = v/2 for a > 3). (Erdés attributes the special case of part (b) when k = 0
to G. Szekeres, citing a paper of Erdés & Szekeres [7].)

Theorem 6.4. Let k be a nonnegative integer.
(a) There exists a constant t = t(k) > 1 such that, if a > 2, then Ry(a,a) > t*.
(b) If a >k + 2, then Ry(a,a) < 4*7%2(k + 4).

Proof. (a) Let H be the graph formed by the disjoint union of K441 and K;. Let ¢
be that given by Theorem for this H. Let n = Lea/ CJ. By Theorem , if n is
sufficiently large, then there exists a graph G of order n such that every subset of V(G)
with cardinality at least clnn induces a subgraph of GG containing a copy of H; thus,
every subset of cardinality at least a induces such a subgraph. By definition of H, this
subgraph is k-sparse in neither G nor G, and so Ry(a,a) > n. Thus, Ry(a,a) > (el/c)a,
when n = Lea/ CJ is sufficiently large.

We have verified the statement for sufficiently large a, since, if a is large, then n is
large. We can verify the statement for all @ > 2 using reasoning similar to that in the
proof of the upper bound in Corollary Let ag be the least “sufficiently large” value
of a, or 2 if this value is less than 2. Let £y, be defined as follows.

(mw-3)"].

Note that this is well defined, since, first, for a > 2 we have Ri(a,a) > 2, and so the
number being raised to a power is greater than 1, while the exponent is positive, and,
second, ty is the minimum value of a nonempty finite set.

Lastly, we set t = min {to, el/c}. We can see that, for this ¢, we have Ri(a,a) > t* for
all a > 2.

(b) We can apply Proposition [.I(b) to show that
20 — 2k — 4 2a — 2k — 2
< .
R a) < < a—k—2 )k+ < a—k—1 )

The desired statement then follows from the fact that (2;) < 4° when s > 1 (this bound
can be proven using a simple inductive argument). [

to = min
2<a<ag

We see that, for fixed k, the values of Ry(a,a) grow exponentially (and thus the values
of Ri(k + a,k + a) do as well).

Corollary 6.5. For fized k, the value of log Ri(a,a) is ©(a). O

17



References

1]

2]

S. A. Burr, P. Erdés, R. J. Faudree, and R. H. Schelp, On the difference between
consecutive Ramsey numbers, Utilitas Math. 35 (1989), 115-118.

G. G. Chappell, ramseyk [computer program|, March 4, 2011, available at
<http://www.cs.uaf.edu/"chappell/papers/defram>.

E. J. Cockayne and C. M. Mynhardt, On 1-dependent Ramsey numbers for graphs,
Discuss. Math. Graph Theory 19 (1999), no. 1, 93-110.

T. Ekim and J. Gimbel, Some defective parameters in graphs, manuscript, 2010.

P. Erdds, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947),
292-294.

P. Erdés and J. Gimbel, A note on the largest H-free subgraph in a random graph,
Graph theory, combinatorics, and applications, v. 1 (Kalamazoo, MI, 1988), 435437,
Wiley-Intersci. Publ., Wiley, New York, 1991.

P. Erdés and G. Szekeres, A combinatorial problem in geometry, Compositio Math.
2 (1935), 463-470.

R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs,
Canad. J. Math. 7 (1955), 1-7.

H. Harborth and I. Mengersen, All Ramsey numbers for five vertices and seven or
eight edges, Discrete Math. 73 (1989), no. 1-2, 91-98.

G. R. T. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory 13
(1989), 245-248.

S. Radziszowski, Small Ramsey numbers, FElectron. J. Combin. (2009), Dynamic
Survey 1, revision #12: August 4, 2009, 72 pp. (electronic).

18



	Introduction
	Previously Known Values
	Basic Properties
	Asymptotic Behavior I
	Specific Values
	Asymptotic Behavior II

