On Defective Ramsey Numbers (DRAFT)

Glenn G. Chappell Department of Computer Science University of Alaska

Fairbanks, AK 99775-6670

chappellg@member.ams.org

John Gimbel

Department of Mathematics and Statistics University of Alaska Fairbanks, AK 99775-6660 jggimbel@alaska.edu

March 4, 2011

2010 Mathematics Subject Classification. Primary 05C55; Secondary 05D10. Key words and phrases. Defective Ramsey number, sparse, dense.

Abstract

If T is a set of vertices of a graph G, then T is k-sparse in G if the subgraph of G induced by T has maximum degree at most k. Following Ekim & Gimbel [4], we define generalized Ramsey numbers: $R_k(a, b)$, for nonnegative integers k, a, b, is the least n such that, for each graph G of order n, either G contains a k-sparse set of a vertices, or the complement of G contains a k-sparse set of b vertices. We study R_k , proving basic properties and bounds.

We compute various values of R_k . We show that, if $a \ge 2$ and $k \ge 3a - 6$, then $R_k(k + a, k + a) = k + 3a - 4$. We compute other specific values of $R_k(a, b)$, some using a computer. In particular, we determine $R_k(a, b)$ for all k, a, b for which this value is at most 12.

We also analyze certain asymptotic behaviors of R_k . We show that, for fixed a, b, the value of $R_k(k + a, k + b)$ is k + O(1). We further show that, for fixed k, the value of $\log R_k(a, a)$ is $\Theta(a)$.

1 Introduction

Let k be a nonnegative integer. Given a (finite, undirected) graph G, a set T of vertices of G is k-sparse in G if the subgraph of G induced by T has maximum degree at most k. Some authors refer to a k-sparse set as "k-dependent". A 0-sparse set is the same as an independent set.

Following Ekim & Gimbel [4] we define generalized Ramsey numbers: $R_k(a, b)$ is the least n such that, for each graph G of order n, either G contains a k-sparse set of a vertices, or \overline{G} contains a k-sparse set of b vertices. Note that that values of R_0 are the usual 2-color Ramsey numbers.

Note that the function R_k can be thought of in a graph Ramsey number context. If \mathcal{A}, \mathcal{B} are sets of graphs, then $R(\mathcal{A}, \mathcal{B})$ is the least n such that, for each graph G of order n, either G contains a subgraph isomorphic to an element of \mathcal{A} , or \overline{G} contains a subgraph isomorphic to an element of \mathcal{A} , or \overline{G} contains a subgraph isomorphic to an element of \mathcal{B} . Say a graph H is k-dense if V(H) is k-sparse in \overline{H} . Let \mathcal{A} be the set of all k-dense graphs on a vertices, and let \mathcal{B} be the set of all k-dense graphs on b vertices. It is not hard to see that $R_k(a, b) = R(\mathcal{A}, \mathcal{B})$.

Thus, when we find values of R_k , we are also determining more traditional graph Ramsey numbers.

Such reasoning has been used, for example, by Cockayne & Mynhardt [3, Cor. 3(iii)], to determine $R_1(5,5)$. The 4-spoke wheel, W_4 , is 1-dense. Further, every 1-dense graph of order 5 has a subgraph isomorphic to W_4 . Thus, $R_1(5,5) = R(W_4, W_4)$. Cockayne & Mynhardt reference Harborth & Mengersen [9, Thm. 2], who showed that $R(W_4, W_4) = 15$. (That $R(W_4, W_4) = 15$ was also stated without proof by Hendry [10]; see Radziszowski [11, Sect. 4.2].)

In this paper, we study R_k . In Section 2, we list previously known values of R_k . In Section 3, we give basic properties and bounds on R_k . In Section 4, we analyze the behavior of $R_k(k+a, k+b)$, when a, b are fixed and k increases. In Section 5, we compute various values of R_k , including nontrivial infinite families of values, as well as some values determined using a computer. In Section 6, we continue our discussion of asymptotic behavior of R_k . We turn our attention to $R_k(a, a)$ when k is fixed and a increases.

For a graph G, we denote the vertex set of G by V(G). If $T \subseteq V(G)$, then G[T] is the subgraph of G induced by T.

2 Previously Known Values

The following table shows the known values of $R_0(a, b)$ —that is, ordinary 2-color Ramsey numbers—for $1 \le a, b \le 11$. See the survey by Radziszowski [11, Sect. 2.1]. We use the obvious facts that $R_0(1, b) = 1$ and $R_0(2, b) = b$; see Lemma 3.1(f) and (g).

R_0	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	3	4	5	6	7	8	9	10	11
3	1	3	6	9	14	18	23	28	36		
4	1	4	9	18	25						
5	1	5	14	25							
6	1	6	18								
7	1	7	23								
8	1	8	28								
9	1	9	36								
10	1	10									
11	1	11									

The following table shows the known values of $R_1(a, b)$, for $2 \le a, b \le 10$. These are from Cockayne & Mynhardt [3]; also see Ekim & Gimbel [4]. We also use the facts that $R_1(2, b) = 2$ and $R_1(3, b) = b$; see Lemma 3.1(f) and (g).

R_1	2	3	4	5	6	7	8	9	10
2	2	2	2	2	2	2	2	2	2
3	2	3	4	5	6	7	8	9	10
4	2	4	6	9	11	16	17		
5	2	5	9	15					
6	2	6	11						
7	2	7	16						
8	2	8	17						
9	2	9							
10	2	10							

The following table shows the previously known values of $R_2(a, b)$, for $3 \le a, b \le 7$. Of these, one nontrivial value was known before this work: $R_2(5,5) = 7$, from Ekim & Gimbel [4, Thm. 3]. We also use the facts that $R_2(3, b) = 3$ and $R_2(4, b) = b$; see Lemma 3.1(f) and (g).

R_2	3	4	5	6	7	8
3	3	3	3	3	3	3
4	3	4	5	6	7	8
5	3	5	7			
6	3	6				
7	3	7				
8	3 3 3 3 3 3 3	8				

-

In Section 5 we will add to the above table.

3 Basic Properties

The following lemma gives basic properties of k-sparseness and R_k . Some parts of the lemma—(b), (e), (f), and special cases of (g)—were observed by Ekim & Gimbel [4, Remarks 2, 3, 5–7] and Cockayne & Mynhardt [3, Prop. 1, Cor. 3(i)].

Lemma 3.1. Let k, a, and b be nonnegative integers. Then the following all hold.

- (a) Let G be a graph, and let $T \subseteq V(G)$ with $|T| \leq k+1$. Then T is k-sparse in G.
- (b) Let G be a graph, and let $T \subseteq V(G)$ with |T| = k + 2. Then either T is k-sparse in G, or T is k-sparse in \overline{G} .
- (c) Let G be a graph, and let $T \subseteq V(G)$. Then T is k-sparse in G iff every (k+2)-subset of T is k-sparse in G.
- (d) $R_{k+1}(a,b) \le R_k(a,b).$

(e)
$$R_k(a,b) = R_k(b,a).$$

(f) If $a \le k+1$ or $b \le k+1$, then $R_k(a,b) = \min\{a,b\}$.

$$(g) R_k(k+2,b) = b.$$

Proof. (a) This is obvious.

(b) If T is not k-sparse in G, then some $x \in T$ is adjacent to k + 1 other vertices of T, that is, to all other vertices of T. Thus, in the subgraph of \overline{G} induced by T, x has degree 0, and every other vertex of T has degree at most k, since each such vertex is not adjacent to x. Therefore, T is k-sparse in \overline{G} .

(c) Clearly, if T is k-sparse in G, then every (k+2)-subset of T is k-sparse in G.

If T is not k-sparse in G, then some $x \in T$ is adjacent to at least k + 1 other vertices of T. Let $U \subseteq T$ consist of x and k + 1 of its neighbors. Then U is a (k + 2)-subset of T that is not k-sparse in G.

- (d) This follows from the fact that every k-sparse set is also (k + 1)-sparse.
- (e) This is obvious.
- (f) This follows from part (a).
- (g) If $b \le k+1$, then the result follows from part (f). Therefore, suppose that $b \ge k+2$. Consider K_{b-1} . This graph does not contain a k-sparse set of order k+2. Furthermore,

since its order is less than b, there can be no set of b vertices that is k-sparse in the complement. Thus, $R_k(k+2, b) \ge b$.

Now let G be a graph of order b containing no k-sparse set of order k + 2. By part (b) every (k + 2)-vertex subset of V(G) is k-sparse in \overline{G} . Therefore, by part (c), V(G) is a b-vertex set that is k-sparse in \overline{G} , and so $R_k(k + 2, b) \leq b$. \Box

The following lemma gives simple bounds for R_k . Part (b) generalizes a result of Burr, Erdős, Faudree, & Shelp [1, Thm. 2], who proved it for k = 0. Part (c) was observed by Ekim & Gimbel [4, Remark 4].

Lemma 3.2. Let k, a, b, c be nonnegative integers. Then the following hold.

- (a) If $a \ge 1$ and $b \ge k+2$, then $R_k(a,b) \ge R_k(a-1,b)+1$.
- (b) If $a \ge 2k+1$ and $b, c \ge 1$, then $R_k(a, b+c-1) \ge R_k(a, b) + R_k(a, c) 1$.
- (c) If $a, b \ge 1$, then $R_k(a, b) \le R_k(a 1, b) + R_k(a, b 1)$.

Proof. (a) If a = 1, then the statement follows from Lemma 3.1(f).

Suppose $a \ge 2$. Let $n = R_k(a - 1, b) - 1$. Note that $n \ge 0$. Let G be a graph of order n, such that G contains no (a - 1)-vertex k-sparse set, and \overline{G} contains no b-vertex k-sparse set.

Let G^* be G with an additional isolated vertex x added. Then G^* has order $n + 1 = R_k(a-1, b)$, and G^* contains no a-vertex k-sparse set. If n < k+1, then, since $b \ge k+2$, the graph $\overline{G^*}$ has order less than b, and so it can contain no b-vertex k-sparse set. On the other hand, if $n \ge k+1$, then adding x to some (b-1)-vertex k-sparse set in \overline{G} results in a set inducing a subgraph in which x has degree greater than k. Thus $\overline{G^*}$ contains no b-vertex k-sparse set.

We conclude that $R_k(a, b)$ is greater than the order of G^* ; the statement follows.

(b) Let G_1 be a graph of order $R_k(a, b) - 1$ such that G_1 has no k-sparse a-set, and $\overline{G_1}$ has no k-sparse b-set. Similarly, let G_2 be a graph of order $R_k(a, c) - 1$ such that G_2 has no k-sparse a-set, and $\overline{G_2}$ has no k-sparse c-set. Let G be the graph formed by taking the disjoint union of G_1 and G_2 and adding all edges between vertices in G_1 and vertices in G_2 .

Graph G has order $R_k(a, b) + R_k(a, c) - 2$. We claim that G has no k-sparse a-set. To see this, let $S \subseteq V(G)$ with |S| = a. If S lies entirely in either G_1 or G_2 , then S is not k-sparse. Thus, since $a \ge 2k + 1$, set S must contain at least k + 1 vertices of either G_1 or G_2 , and it must contain a vertex v in the other G_i . This vertex v thus has degree at least k + 1 in the subgraph of G induced by S. We see that S is not k-sparse.

Further, \overline{G} has no k-sparse (b + c - 1)-set, since any (b + c - 1)-set in V(G) must contain either b vertices of $\overline{G_1}$ or c vertices of $\overline{G_2}$, in which case it is not k-sparse in \overline{G} .

We conclude that $R_k(a, b+c-1)$ is greater than the order of G; the statement follows.

(c) Let $n = R_k(a-1,b) + R_k(a,b-1)$, and let G be a graph of order n. Let $x \in V(G)$. Then either x has at least $R_k(a-1,b)$ non-neighbors or x has at least $R_k(a,b-1)$ neighbors. We consider the former case; the other is handled similarly.

Let T be the set of non-neighbors of x. If T has a b-vertex subset that is k-sparse in \overline{G} , then we are done. Otherwise, T must have an (a-1)-vertex subset U that is k-sparse in G. Then $U \cup \{x\}$ is an a-vertex set that is k-sparse in G. \Box

It seems likely that part (b) of Lemma 3.2 holds for smaller values of a, perhaps for $a \ge k+2$.

4 Asymptotic Behavior I

In the following proposition, we use Lemma 3.2 to establish bounds on $R_k(k+a, k+b)$ in terms of k, a, and b.

Proposition 4.1. Let $k \ge 0$, and let $a, b \ge 2$. Then the following hold.

(a)
$$R_k(k+a, k+b) \ge k+a+b-2$$
.

(b) $R_k(k+a,k+b) \leq {\binom{a+b-4}{a-2}}k + {\binom{a+b-2}{a-1}}.$

Proof. (a) We proceed by induction on a. In the base case, a = 2. We need to show that $R_k(k+2, k+b) \ge k+b$. This follows from Lemma 3.1(g).

If a > 2, then we apply Lemma 3.2(a) to obtain

$$R_k(k+a, k+b) \ge R_k(k+a-1, k+b) + 1$$

$$\ge (k+a+b-3) + 1$$

$$= k+a+b-2.$$

(b) We proceed by induction, first on a, and then on b. If a = 2, then the right-hand side of the inequality equals k + b, and we need to show that $R_k(k + 2, k + b) \le k + b$. This follows from Lemma 3.1(g). The inequality similarly holds when b = 2.

Now assume that $a, b \ge 3$, and that the inequality holds for all smaller values of a and, with the given value of a, for all smaller values of b. Apply Lemma 3.2(c) to obtain

$$R_{k}(k+a,k+b) \leq R_{k}(k+a-1,k+b) + R_{k}(k+a,k+b-1) \\ \leq \left[\binom{a+b-5}{a-3} k + \binom{a+b-3}{a-2} \right] + \left[\binom{a+b-5}{a-2} k + \binom{a+b-3}{a-1} \right] \\ = \binom{a+b-4}{a-2} k + \binom{a+b-2}{a-1}. \quad \Box$$

Proposition 4.1 implies that, for fixed a, b, the value of $R_k(k + a, k + b)$ is $\Theta(k)$. We will prove a stronger statement: that this value is k + O(1)—thus showing that part (b) of Proposition 4.1 is far from best possible. We begin by finding exact formulas for $R_k(k + a, k + a)$ when k is sufficiently large.

Theorem 4.2. Let $k, a \ge 0$. Then the following hold.

- (a) If $k \ge a 3$, then $R_k(k + a, k + a) \ge k + 3a 4$.
- (b) If $a \ge 2$ and $k \ge 3a 6$, then $R_k(k + a, k + a) = k + 3a 4$.

Proof. (a) If a = 0, 1, then the statement follows from Lemma 3.1(f). If a = 2, then the statement follows from Lemma 3.1(g).

Suppose that $a \ge 3$ and $k \ge a - 3$. Define a graph $D_{k,a}$ as follows. Let P, Q, R be disjoint sets of vertices with |P| = |Q| = 2a - 4 and |R| = k - (a - 3). Let the vertex

set of $D_{k,a}$ be $P \cup Q \cup R$. Add edges: let the edges between sets P, Q form a regular bipartite graph with degree a-2. Let each vertex of Q be adjacent to every other vertex of Q and every vertex of R. This defines $D_{k,a}$. Note that $P \cup R$ is an independent set in $D_{k,a}$, while Q induces a complete subgraph.

 $D_{k,a}$ has order (2a - 4) + (2a - 4) + [k - (a - 3)] = k + 3a - 5. Thus, to obtain a set of k + a vertices of $D_{k,a}$, we would remove 2a - 5 vertices.

Let $S \subseteq V(D_{k,a})$ with |S| = k+a. The set Q contains 2a-4 vertices. Thus, S contains at least 1 vertex of Q. Each vertex in Q has degree (a-2) + (2a-5) + [k - (a-3)] = k + 2a - 4. Thus, the subgraph of $D_{k,a}$ induced by S has a vertex of degree at least (k + 2a - 4) - (2a - 5) = k + 1, and so S cannot be k-sparse in $D_{k,a}$.

Similarly, the set P contains 2a - 4 vertices. Thus, S contains at least 1 vertex of P. Each vertex in P has degree a - 2. Thus, the subgraph of $D_{k,a}$ induced by S has a vertex of degree at most a - 2, which has degree at least (k + a - 1) - (a - 2) = k + 1 in $\overline{D_{k,a}}$. Hence, S cannot be k-sparse in $\overline{D_{k,a}}$.

We see that $D_{k,a}$ is a graph of order k+3a-5 such that neither $D_{k,a}$ nor its complement has a k-sparse set of k + a vertices. Statement (a) follows.

(b) Because $a \ge 2$ and $k \ge 3a - 6$, we have $k \ge a - 3$, and so we can apply part (a). It remains to show that $R_k(k + a, k + a) \le k + 3a - 4$. Suppose for a contradiction that this is false. Then there must exist a graph G with order k + 3a - 4, such that each (k + a)-vertex subset of V(G) is k-sparse in neither G nor \overline{G} . That is, each (k + a)-vertex subset of V(G) induces a subgraph of G having a vertex of degree at least k + 1 and a vertex of degree at most a - 2 = (k + a - 1) - (k + 1).

We say a vertex v is strong in G if there exists some (k + a)-vertex induced subgraph of G in which v has degree at least k + 1. Thus v is strong in G iff the degree of v in G is at least k + 1.

We say a vertex v is weak in G if there exists some (k + a)-vertex induced subgraph of G in which v has degree at most a - 2. Thus v is weak in G iff the degree of v in G is at most 3a - 6 = (a - 2) + [(k + 3a - 4) - (k + a)].

Note that k + 1 > 3a - 6, and so no vertex can be both strong and weak in G. (Note: This is why we need $k \ge 3a - 6$.)

There must exist at least 2a - 3 weak vertices, since, otherwise, we can remove 2a - 4 vertices (noting that $2a - 4 \ge 0$, since $a \ge 2$), leaving a set of k + a vertices, none of which is weak in G. Such a set would be k-sparse in \overline{G} .

We say a vertex v that is weak in G is special if v is adjacent to at most a - 2 strong vertices in G. If we remove 2a - 4 weak vertices from G, then the resulting induced subgraph has order k + a, and so must contain a vertex x of degree at most a - 2. Since we only removed weak vertices, and no weak vertex is strong, the subgraph must contain every strong vertex of G, and so x is a special weak vertex. Since we can remove any collection of 2a - 4 weak vertices of G and find a special weak vertex in what remains, G must contain at least 2a - 3 special weak vertices.

Let $S \subseteq V(G)$ be a set of 2a - 3 special weak vertices. Let $T \subseteq V(G)$ be the set of all strong vertices of G that are adjacent to more than a - 2 vertices of S. Note that S, T are disjoint. Because each vertex in S is adjacent to at most a - 2 strong vertices, we have |T| < |S| = 2a - 3, and so $|V(G) - T| \ge k + a$.

Let U be a set of k + a vertices of G, such that $S \subseteq U \subseteq V(G) - T$. Such a set U exists, because $a - 3 \leq k$, and so $|S| = 2a - 3 \leq k + a = |U|$. We claim that this U is k-sparse (which would be a contradiction). To see this, consider a vertex $z \in U$. If z is not strong in G, then z has degree at most k. If z is strong in G, then, since $z \notin T$, z is adjacent to at most a - 2 vertices of S. There are (k + a) - (2a - 3) - 1 = k - a + 2 vertices of U, other than z, that do not lie in S. Thus, in the subgraph of G induced by U, vertex z has degree at most (a - 2) + (k - a + 2) = k. We see that U is k-sparse.

By contradiction, statement (b) is proven. \Box

Using Theorem 4.2, we can show that, for fixed a, b, the value of $R_k(k + a, k + b)$ is k + O(1).

Corollary 4.3. For each pair of integers a, b, there exist constants $\ell_{a,b}$ and $u_{a,b}$ so that

$$\ell_{a,b} \le R_k(k+a,k+b) - k \le u_{a,b}$$

for all $k \ge 0$ for which $R_k(k+a, k+b)$ is defined.

Proof. Fix integers a, b. Without loss of generality, say $a \ge b$. If b < 2, then the result follows from Lemma 3.1(f), with $\ell_{a,b} = u_{a,b} = b$.

Suppose that $b \ge 2$; then $a \ge 2$ as well. Let $\ell_{a,b}$, $u_{a,b}$ be defined as follows.

$$\ell_{a,b} = a + b - 2;$$

$$u_{a,b} = \max_{0 \le k \le 3a - 6} [R_k(k + a, k + a) - k]$$

The lower bound now follows from Proposition 4.1(a). We consider the upper bound. Note that $u_{a,b}$ is well defined, since we take the maximum value of a nonempty finite set.

By Lemma 3.2(a), since $a \ge b$, we have $R_k(k+a, k+b) \le R_k(k+a, k+a)$. It thus suffices to show that $R_k(k+a, k+a) - k \le u_{a,b}$. When $k \le 3a - 6$ this follows from the definition of $u_{a,b}$. If k > 3a - 6, then we have

$$R_{k}(k+a, k+a) - k = 3a - 4 \qquad \text{by Theorem 4.2(b)} \\ = R_{3a-6}([3a-6]+a, [3a-6]+a) - [3a-6] \qquad \text{by Theorem 4.2(b)} \\ \leq u_{a,b}. \quad \Box$$

It appears that, for fixed $a, b \ge 0$, the value $R_k(k+a, k+b) - k$ is maximized when k = 0, and thus that we can set $u_{a,b} = R(a, b)$ in Corollary 4.3.

Conjecture 4.4. If $k, a, b \ge 0$, then $R_k(k+a, k+b) - k \le R(a, b)$. \Box

Conjecture 4.4 would follow from the following stronger conjecture.

Conjecture 4.5. For fixed integers a, b, the sequence of values of $R_k(k+a, k+b) - k$ is nonincreasing. \Box

We will discuss asymptotic behavior again later, in Section 6, after we determine a number of previously unknown values of R_k .

5 Specific Values

Using Theorem 4.2, we can establish, for each k, the first nontrivial value of R_k . That is, we find the first value that is not given by Lemma 3.1.

Corollary 5.1. Let $k \ge 0$. Then,

$$R_k(k+3, k+3) = \begin{cases} 6, & \text{if } k = 0, \\ k+5, & \text{otherwise.} \end{cases}$$

Proof. When k = 0 we use the well known result that R(3,3) = 6 (noted by Greenwood & Gleason [8, p. 3]). The case k = 1 was proven by Cockayne & Mynhardt [3, Cor. 3(ii)]. The case k = 2 was proven by Ekim & Gimbel [4, Thm. 3].

When $k \ge 3$, we set a = 3, note that $k \ge 3a - 6$, and apply Theorem 4.2(b). \Box

Now we determine a number of previously unknown individual values of $R_k(a, b)$. We will give the full proof for one value: $R_2(5, 6) = 8$. For the others, we give proofs for the lower bounds; the upper bounds were verified using a computer.

Theorem 5.2. $R_2(5,6) = 8$.

Proof. For convenience, we will actually prove that $R_2(6,5) = 8$. The lower bound follows from Lemma 3.2(a) and the fact that $R_2(5,5) = 7$ (proven by Ekim & Gimbel [4, Thm. 3]).

For the upper bound, suppose for a contradiction that there exists a graph G of order 8, such that there is no 2-sparse set of order 6 in G, and there is no 2-sparse set of order 5 in \overline{G} . We note that G can contain neither a 5-cycle nor $K_{2,3}$ as a subgraph (not necessarily induced), for otherwise \overline{G} would contain a 2-sparse set of order 5.

Maximum Degree at Most 3—We claim that G has maximum degree at most 3.

Suppose for a contradiction that G has a vertex v of degree at least 4. Let $S \subseteq V(G)$ be a set of 4 vertices that belong to the open neighborhood of v. Let $T = V(G) - [S \cup \{v\}]$; note that |T| = 3. The S-degree of a vertex that does not lie in S, is defined to be the cardinality of the intersection of its open neighborhood with S. Say $T = \{x, y, z\}$, with the S-degree of x being at least that of y, which, in turn, is at least that of z.

As G does not contain a 5-cycle, we see that G[S] cannot contain a path on four vertices. As G does not contain $K_{2,3}$, we see that S is 2-sparse. Thus, G[S] is isomorphic to a subgraph of either $K_3 \cup K_1$ or $K_2 \cup K_2$.

S-Degree at Most 1. We wish to show that, for S, T defined above, each vertex in T has S-degree at most 1. If x has S degree 3 or more, then G contains a $K_{2,3}$. We may thus assume that every vertex in T has S-degree at most 2.

Suppose that x has S-degree exactly 2. Then the 2 neighbors of x in S might be adjacent, but cannot be adjacent to other vertices of S, for otherwise G would contain a 5-cycle. In particular, S must be 1-sparse in G.

Suppose that y also has S-degree exactly 2. Then, as G contains no 5-cycle, x and y must be nonadjacent. As G does not contain a $K_{2,3}$, we see that x and y cannot have

exactly the same neighborhood in S. If x and y have a common neighbor in S, then S is an independent set, and $S \cup \{x, y\}$ forms a 2-sparse set of order six. On the other hand, if x and y each have S-degree 2, but share no common neighbor, then $S \cup \{x, y\}$ induces a subgraph of two disjoint triangles, and hence is 2-sparse. We see that y has S-degree at most 1.

If y and z have a common neighbor $w \in S$, then neither y nor z can be adjacent to x, since G contains no 5-cycle, and so $(S \cup T) - \{w\}$ is a 2-sparse 6-set. On the other hand, if there is no such w, then $S \cup \{y, z\}$ is a 2-sparse 6-set.

Thus, we have shown that each vertex of T has S-degree at most 1.

Finishing the Maximum Degree 3 Proof. We now complete the verification of our claim that G has maximum degree at most 3. Recall that G[S] is isomorphic to a subgraph of either $K_3 \cup K_1$ or $K_2 \cup K_2$.

We wish to show, first, that there is at most 1 vertices in $G[S \cup T]$ with degree at least 4, and, second, that if 2 vertices in $G[s \cup T]$ have degree at least 3, then they are adjacent.

For the first part, note that S, T are each 2-sparse. Thus, any vertex lying in one of these sets and having degree at least 4 in $G[S \cup T]$, must be adjacent to at least 2 vertices in the other set. Since there are at most 3 edges between S, T, there can be only 1 such vertex.

For the second part, let a, b be vertices of degree at least 3 in $G[S \cup T]$. Suppose that $a \in T$. If $b \in T$, then G[T] is K_3 , and so a, b are adjacent. On the other hand, if $b \in S$, then a must be adjacent to both other vertices of T. Since G contains no 5-cycle, there can be only one vertex in S that is adjacent to a vertex of T. This vertex must thus be b, and so a, b are adjacent.

Now suppose that $a, b \in S$. Then one of the two has degree at least 2 in G[S], while the other has degree at least 1. Considering the possible isomorphism classes of G[S], we see that a, b must be adjacent.

The first and second parts, above, having been verified, we conclude that removing a vertex of maximum degree from $G[S \cup T]$ leaves a 2-sparse set of 6 vertices.

Thus, our claim holds: G has maximum degree at most 3.

Triangle Free—We claim that G is triangle-tree.

Suppose for a contradiction that G contains a triangle. Let N be the set of vertices that do not lie in the triangle, and have at least one neighbor in the triangle. Because G has maximum degree at most 3, each vertex in the triangle has at most 1 neighbor in N, and so $|N| \leq 3$. If $|N| \leq 2$, then the vertices of the triangle together with 3 other vertices that do not lie in N, form a 2-sparse 6-set. Thus |N| = 3, and so there is a matching between the triangle and N.

Let u, v be the 2 vertices of G in neither the triangle nor in N. As G contains no 5-cycle, neither u nor v can have more than 1 neighbor in N, and G[N] can have no edges. If u and v have a common neighbor, say w, then the removal of the neighbor of w in the triangle leaves a 2-sparse set. On the other hand, if u and v do not share a common neighbor, then the removal of any vertex in the triangle leaves a 2-sparse set.

Thus, our claim holds: G is triangle-free.

Handling a Bipartite Graph—Suppose that G is not bipartite. Then G contains an induced odd cycle. As this cycle can be neither a triangle nor a 5-cycle, it must be an induced 7-cycle, which is 2-sparse. We may thus assume that G is bipartite.

Let A, B be the partite sets of G, where $|A| \leq |B|$. As B is 2-sparse, we must have $|B| \leq 5$. Accordingly, $|B| \in \{4, 5\}$.

We first consider the case |B| = 4.

Suppose that both A and B contain a vertex of degree 3. If these 2 vertices are nonadjacent, then the removal of both vertices leaves a 2-sparse 6-set. Thus, each vertex of degree 3 in A must be adjacent to each vertex of degree 3 in B. The removal of one such vertex from A and one from B leaves a 2-sparse 6-set. We may thus assume, without loss of generality, that A contains no vertices of degree 3.

The set B cannot contain 3 vertices of degree 3, since these would necessarily have a common neighbor, which would be a vertex of degree 3 in A. Hence, we may remove 2 vertices of B to obtain a 2-sparse 6-set.

In our final case, we have |B| = 5, and hence |A| = 3.

If B contains at least 2 vertices of degree 3, then G contains a $K_{2,3}$. If B contains exactly 1 vertex of degree 3, then the removal of this vertex leaves a 2-sparse set. Thus, B contains no vertices of degree 3. If at most 2 vertices of A have degree 3, then we remove them and produce a 2-sparse set. We may thus assume that all vertices of A have degree 3. Hence some vertex of B must have degree 2. Remove this vertex and its nonneighbor in A; what remains is a 2-sparse set of 6 vertices.

This exhausts all cases. Thus, no such G exists; our desired conclusion follows. \Box

Using a computer program, we have determined other values of R_k . Our software is written in the Python programming language; it is available via the Worldwide Web [2].

We have also been able to enumerate the number of extremal graphs for these values of R_k . A graph G is *extremal* for $R_k(a, b)$ if G has order $R_k(a, b) - 1$, G contains no k-sparse set of a vertices, and \overline{G} contains no k-sparse set of b vertices. Informally, G is extremal if its existence shows that $R_k(a, b)$ is at least its actual value.

Proposition 5.3. The following all hold.

- (a) $R_2(5,7) = 10$, with exactly 16 extremal graphs.
- (b) $R_2(5,8) = 12$, with exactly 8 extremal graphs.
- (c) $R_2(6,6) = 12$, with exactly 2 extremal graphs.
- (d) $R_3(6,7) = 9$, with exactly 28 extremal graphs.
- (e) $R_3(6,8) = 10$, with exactly 159 extremal graphs.
- (f) $R_3(6,9) = 12$, with exactly 4 extremal graphs.
- (g) $R_3(7,7) = 11$, with exactly 4 extremal graphs.

- (h) $R_3(7,8) = 13$, with exactly 43 extremal graphs.
- (i) $R_4(7,8) = 10$, with exactly 84 extremal graphs.
- (j) $R_4(7,9) = 11$, with exactly 550 extremal graphs.
- (k) $R_4(7, 10) = 13$, with exactly 4 extremal graphs.
- (l) $R_4(8,8) = 12$, with exactly 8 extremal graphs.
- (m) $R_5(8,9) = 11$, with exactly 316 extremal graphs.
- (n) $R_5(8, 10) = 12$, with exactly 2430 extremal graphs.
- (o) $R_5(9,9) = 13$, with exactly 22 extremal graphs.
- (p) $R_6(9, 10) = 12$, with exactly 1712 extremal graphs.

The upper bounds were all verified using a computer program [2]. We give proofs for the lower bounds.

Proof of Lower Bounds. (a) For the lower bound, we can use the following 9-vertex graph G, which is extremal for $R_2(7,5)$. Begin with a 6-cycle. Let S be an independent set of 3 vertices in this cycle. For each $v \in S$, add a new vertex v' having the same neighbors as v. Let G be the resulting graph.

Then G has no 7-vertex 2-sparse set and \overline{G} has no 5-vertex 2-sparse set, showing that $R_2(7,5) > 9$.

(b) For the lower bound, we can use the following 11-vertex graph G, which is extremal for $R_2(8,5)$. The vertex set of G is $\{1, 2, 3, a, b, c, d, w, x, y, z\}$, with edges as follows. Vertices a, b, c, d induce a K_4 . Vertices w, x, y, z induce a K_4 . Vertex 1 is adjacent to a and w. Vertex 2 is adjacent to b and x. Vertex 3 is adjacent to c and y.

Then G has no 8-vertex 2-sparse set and G has no 5-vertex 2-sparse set, showing that $R_2(8,5) > 11$.

(c) For the lower bound, we can use the following 11-vertex graph G, which is extremal for $R_2(6, 6)$. The vertex set of G is $\{1, 2, 3, 4, a, b, c, d, t, x, y\}$, with edges as follows. Vertices 1, a, 2, b, 3, c, 4, d form an 8-cycle, in that order. The set $\{a, b, c, d, t\}$ induces a K_5 . Each vertex of $\{1, 2, 3, 4\}$ is adjacent to each vertex of $\{x, y\}$, and t is adjacent to y.

Then G has no 6-vertex 2-sparse set and G has no 6-vertex 2-sparse set, showing that $R_2(6,6) > 11$.

(d) The lower bound follows from Lemma 3.2(a) and the fact that $R_3(6,6) = 8$, by Theorem 4.2(b).

(e) The lower bound follows from Lemma 3.2(a) and the fact that $R_3(6,7) = 9$, from part (d).

(f) For the lower bound, we can use the following 11-vertex graph G, which is extremal for $R_3(9,6)$. The vertex set of G is $\{1, 2, 3, 4, 5, 6, a, b, c, x, y\}$, with edges as follows. Vertices

a, b, c, x, y induce a K_5 . Vertices 1, 2 are each adjacent to a. Vertices 3, 4 are each adjacent to b. Vertices 5, 6 are each adjacent to c.

Then G has no 9-vertex 3-sparse set and G has no 6-vertex 3-sparse set, showing that $R_3(9,6) > 11$.

(g) The lower bound follows from Theorem 4.2(a).

(h) For the lower bound, we can use the following 12-vertex graph G, which is extremal for $R_3(8,7)$. The vertex set of G is $\{1,2,3,4,5,a,b,c,d,e,f,x\}$, with edges as follows. Vertices a, b, c, d, e, f induce a K_6 . Vertices 1, 2 are each adjacent to a and b. Vertices 3, 4 are each adjacent to c and d. Vertex 5 is adjacent to e and f. Vertex x is adjacent to 1, 2, 3, 4, 5, and 6.

Then G has no 8-vertex 3-sparse set and \overline{G} has no 7-vertex 3-sparse set, showing that $R_3(8,7) > 12$.

(i) The lower bound follows from Lemma 3.2(a) and the fact that $R_4(7,7) = 9$, by Theorem 4.2(b).

(j) The lower bound follows from Lemma 3.2(a) and the fact that $R_4(7,8) = 10$, from part (i).

(k) For the lower bound, we can use the following 12-vertex graph G, which is extremal for $R_4(10,7)$. The vertex set of G is $\{1, 2, 3, 4, 5, 6, a, b, c, x, y, z\}$, with edges as follows. Vertices a, b, c, x, y, z induce a K_6 . Vertices 1, 2 are each adjacent to a. Vertices 3, 4 are each adjacent to b. Vertices 5, 6 are each adjacent to c.

Then G has no 10-vertex 4-sparse set and G has no 7-vertex 4-sparse set, showing that $R_4(10,7) > 12$.

(1) The lower bound follows from Theorem 4.2(a).

(m) The lower bound follows from Lemma 3.2(a) and the fact that $R_5(8,8) = 10$, by Theorem 4.2(b).

(n) The lower bound follows from Lemma 3.2(a) and the fact that $R_5(8,9) = 11$, from part (m).

(o) The lower bound follows from Theorem 4.2(a).

(p) The lower bound follows from Lemma 3.2(a) and the fact that $R_6(9,9) = 11$, by Theorem 4.2(b). \Box

Remark 5.4. Using our computer program [2], we determined that there are exactly 13 extremal graphs for $R_2(5,6)$. \Box

We can now update our tables of values of R_k . Note that we have computed no new values of R_0 or R_1 .

The following table shows the values of $R_2(a, b)$ that we have found, for $3 \le a, b \le 10$. These are from Lemma 3.1(f) and (g), Ekim & Gimbel [4, Thm. 3] (for $R_2(5,5) = 7$), Theorem 5.2, and Proposition 5.3. Newly established values are shown in boldface.

R_2	3	4	5	6	7	8	9	10
3	3	3	3	3	3	3	3	3
4	3	4	5	6	7	8	9	10
5	3	5	7	8	10	12		
6	3	6	8	12				
7	3	7	10					
8	3	8	12					
9	3	9						
10	3	10						

The following table shows the values of $R_3(a, b)$ that we have found, for $4 \le a, b \le 11$. These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3. Again, newly established values are shown in boldface.

R_3	4	5	6	7	8	9	10	11
4	4	4	4	4	4	4	4	4
5	4	5	6	7	8	9	10	11
6	4	6	8	9	10	12		
7	4	7	9	11	13			
8	4	8	10	13				
9	4	9	12					
10	4	10						
11	4	11						

The following table shows the values of $R_4(a, b)$ that we have found, for $5 \le a, b \le 12$. These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3.

R_4	5	6	7	8	9	10	11	12
5	5	5	5	5	5	5	5	5
6	5	6	7	8	9	10	11	12
7	5	7	9	10	11	13		
8	5	8	10	12				
9	5	9	11					
10	5	10	13					
11	5	11						
12	5	12						

The following table shows the values of $R_5(a, b)$ that we have found, for $6 \le a, b \le 13$. These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3.

R_5	6	$\overline{7}$	8	9	10	11	12	13
6	6	6	6	6	6	6	6	6
7	6	7	8	9	10	11	12	13
8	6	8	10	11	12			
9	6	9	11	13				
10	6	10	12					
11	6	11						
12	6	12						
13	6	13						

The following table shows the values of $R_6(a, b)$ that we have found, for $7 \le a, b \le 14$. These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3.

	R_6	7	8	9	10	11	12	13	14
-	7	7	7	7	7	7	7	7	7
	8	7	8	9	10	11	12	13	14
	9	7	9	11	12				
	10	7	10	12	14				
	11	7	11						
	12	7	12						
	13	7	13						
	14	7	14						

The following table shows the values of $R_7(a, b)$ that we have found, for $8 \le a, b \le 15$. These are from Lemma 3.1(f) and (g), and Theorem 4.2(b).

R_7	8	9	10	11	12	13	14	15
8	8	8	8	8	8	8	8	8
9	8	9	10	11	12	13	14	15
10	8	10	12					
11	8	11		15				
12	8	12						
13	8	13						
14	8	14						
15	8	15						

Remark 5.5. We have determined $R_k(a, b)$ for all k, a, b for which $R_k(a, b) \leq 12$. These are the values corresponding to entries in the above tables that are at most 12, along with other values that can easily be computed using Lemma 3.1(f) and (g). \Box

6 Asymptotic Behavior II

Once again, we are interested in the behavior of $R_k(k+a, k+b)$ when a, b are fixed and k increases. We know the following, from Corollary 5.1.

$R_k(k+3,k+3)$	value
$R_0(3,3)$	6
$R_1(4,4)$	6
$R_2(5,5)$	7
$R_{3}(6,6)$	8
$R_4(7,7)$	9
$R_{5}(8,8)$	10

The values below are from Greenwood & Gleason [8, p. 4] (for $R_0(4, 4) = 18$), Cockayne & Mynhardt [3, Cor. 3(iii)] (for $R_1(5,5) = 15$), Proposition 5.3, and Theorem 4.2.

$R_k(k+4,k+4)$	value
$R_0(4,4)$	18
$R_1(5,5)$	15
$R_2(6,6)$	12
$R_{3}(7,7)$	11
$R_4(8,8)$	12
$R_{5}(9,9)$	13
$R_6(10, 10)$	14
$R_7(11, 11)$	15
$R_8(12, 12)$	16
$R_9(13, 13)$	17

More generally, we have the following.

Proposition 6.1. For all $k \ge 0$, we have the following.

- (a) $R_k(k+3, k+3) = \max\{6, 5+k\}.$
- (b) $R_k(k+4, k+4) = \max\{18 3k, 8 + k\}$. \Box

In both cases above, the Ramsey number is the maximum of two polynomials of degree at most 1 in k. Based on this, we indulge in wild speculation: does this continue to be true for other $R_k(k + a, k + a)$? For other $R_k(k + a, k + b)$?

It appears that, for fixed a, there is a unique k_a such that the values $R_k(k+a, k+a)$ are nonincreasing for $k \leq k_a$, and increasing for $k \geq k_a$. For example, we have $k_3 = 1$ and $k_4 = 3$. We ask about the behavior of this k_a .

Question 6.2. Does this value k_a exist for each a? If so, what is the behavior of k_a as a grows? \Box

We have discussed the behavior of $R_k(k + a, k + b)$ when a, b are fixed and k grows large. What about when k is fixed and a, b increase? We establish bounds for the diagonal values $R_k(a, a)$. We will make use of the following theorem due to Erdős & Gimbel [6, Thm. 3]. (Note that a statement *almost surely* holds, if the probability of it holding converges to 1—in this case, as $n \to \infty$.) **Theorem 6.3** (Erdős & Gimbel 1991 [6, Thm. 3]). Given a fixed graph H and a random graph G of order n, the largest H-free subgraph of G almost surely has cardinality less than $c \ln n$ where c is dependent only on H. \Box

The following theorem generalizes a result of Erdős [5, Thm. 1], who proved it for k = 0 (with $t = \sqrt{2}$ for $a \ge 3$). (Erdős attributes the special case of part (b) when k = 0 to G. Szekeres, citing a paper of Erdős & Szekeres [7].)

Theorem 6.4. Let k be a nonnegative integer.

- (a) There exists a constant t = t(k) > 1 such that, if $a \ge 2$, then $R_k(a, a) > t^a$.
- (b) If $a \ge k+2$, then $R_k(a,a) < 4^{a-k-2}(k+4)$.

Proof. (a) Let H be the graph formed by the disjoint union of $K_{1,k+1}$ and K_1 . Let c be that given by Theorem 6.3 for this H. Let $n = \lfloor e^{a/c} \rfloor$. By Theorem 6.3, if n is sufficiently large, then there exists a graph G of order n such that every subset of V(G) with cardinality at least $c \ln n$ induces a subgraph of G containing a copy of H; thus, every subset of cardinality at least a induces such a subgraph. By definition of H, this subgraph is k-sparse in neither G nor \overline{G} , and so $R_k(a, a) > n$. Thus, $R_k(a, a) > (e^{1/c})^a$, when $n = \lfloor e^{a/c} \rfloor$ is sufficiently large.

We have verified the statement for sufficiently large a, since, if a is large, then n is large. We can verify the statement for all $a \ge 2$ using reasoning similar to that in the proof of the upper bound in Corollary 4.3. Let a_0 be the least "sufficiently large" value of a, or 2 if this value is less than 2. Let t_0 be defined as follows.

$$t_0 = \min_{2 \le a \le a_0} \left[\left(R_k(a, a) - \frac{1}{2} \right)^{1/a} \right].$$

Note that this is well defined, since, first, for $a \ge 2$ we have $R_k(a, a) \ge 2$, and so the number being raised to a power is greater than 1, while the exponent is positive, and, second, t_0 is the minimum value of a nonempty finite set.

Lastly, we set $t = \min \{t_0, e^{1/c}\}$. We can see that, for this t, we have $R_k(a, a) > t^a$ for all $a \ge 2$.

(b) We can apply Proposition 4.1(b) to show that

$$R_k(a,a) \le {\binom{2a-2k-4}{a-k-2}}k + {\binom{2a-2k-2}{a-k-1}}.$$

The desired statement then follows from the fact that $\binom{2s}{s} < 4^s$ when $s \ge 1$ (this bound can be proven using a simple inductive argument). \Box

We see that, for fixed k, the values of $R_k(a, a)$ grow exponentially (and thus the values of $R_k(k + a, k + a)$ do as well).

Corollary 6.5. For fixed k, the value of $\log R_k(a, a)$ is $\Theta(a)$.

References

- S. A. Burr, P. Erdős, R. J. Faudree, and R. H. Schelp, On the difference between consecutive Ramsey numbers, *Utilitas Math.* 35 (1989), 115–118.
- [2] G. G. Chappell, ramseyk [computer program], March 4, 2011, available at http://www.cs.uaf.edu/~chappell/papers/defram>.
- [3] E. J. Cockayne and C. M. Mynhardt, On 1-dependent Ramsey numbers for graphs, Discuss. Math. Graph Theory 19 (1999), no. 1, 93–110.
- [4] T. Ekim and J. Gimbel, Some defective parameters in graphs, manuscript, 2010.
- [5] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.
- [6] P. Erdős and J. Gimbel, A note on the largest *H*-free subgraph in a random graph, *Graph theory, combinatorics, and applications*, v. 1 (Kalamazoo, MI, 1988), 435–437, Wiley-Intersci. Publ., Wiley, New York, 1991.
- [7] P. Erdős and G. Szekeres, A combinatorial problem in geometry, *Compositio Math.* 2 (1935), 463–470.
- [8] R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), 1–7.
- [9] H. Harborth and I. Mengersen, All Ramsey numbers for five vertices and seven or eight edges, *Discrete Math.* 73 (1989), no. 1-2, 91–98.
- [10] G. R. T. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory 13 (1989), 245–248.
- [11] S. Radziszowski, Small Ramsey numbers, *Electron. J. Combin.* (2009), Dynamic Survey 1, revision #12: August 4, 2009, 72 pp. (electronic).