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Abstract

If T is a set of vertices of a graph G, then T is k-sparse in G if the subgraph
of G induced by T has maximum degree at most k. Following Ekim & Gimbel [4],
we define generalized Ramsey numbers: Rk(a, b), for nonnegative integers k, a, b,
is the least n such that, for each graph G of order n, either G contains a k-sparse
set of a vertices, or the complement of G contains a k-sparse set of b vertices. We
study Rk, proving basic properties and bounds.

We compute various values of Rk. We show that, if a ≥ 2 and k ≥ 3a− 6, then
Rk(k + a, k + a) = k + 3a − 4. We compute other specific values of Rk(a, b), some
using a computer. In particular, we determine Rk(a, b) for all k, a, b for which this
value is at most 12.

We also analyze certain asymptotic behaviors of Rk. We show that, for fixed a,
b, the value of Rk(k + a, k + b) is k + O(1). We further show that, for fixed k, the
value of logRk(a, a) is Θ(a).

1 Introduction

Let k be a nonnegative integer. Given a (finite, undirected) graph G, a set T of vertices
of G is k-sparse in G if the subgraph of G induced by T has maximum degree at most k.
Some authors refer to a k-sparse set as “k-dependent”. A 0-sparse set is the same as an
independent set.
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Following Ekim & Gimbel [4] we define generalized Ramsey numbers: Rk(a, b) is the
least n such that, for each graph G of order n, either G contains a k-sparse set of a
vertices, or G contains a k-sparse set of b vertices. Note that that values of R0 are the
usual 2-color Ramsey numbers.

Note that the function Rk can be thought of in a graph Ramsey number context. If
A, B are sets of graphs, then R(A,B) is the least n such that, for each graph G of order
n, either G contains a subgraph isomorphic to an element of A, or G contains a subgraph
isomorphic to an element of B. Say a graph H is k-dense if V (H) is k-sparse in H. Let
A be the set of all k-dense graphs on a vertices, and let B be the set of all k-dense graphs
on b vertices. It is not hard to see that Rk(a, b) = R(A,B).

Thus, when we find values of Rk, we are also determining more traditional graph
Ramsey numbers.

Such reasoning has been used, for example, by Cockayne & Mynhardt [3, Cor. 3(iii)],
to determine R1(5, 5). The 4-spoke wheel, W4, is 1-dense. Further, every 1-dense graph of
order 5 has a subgraph isomorphic to W4. Thus, R1(5, 5) = R(W4,W4). Cockayne & Myn-
hardt reference Harborth & Mengersen [9, Thm. 2], who showed that R(W4,W4) = 15.
(That R(W4,W4) = 15 was also stated without proof by Hendry [10]; see Radziszowski [11,
Sect. 4.2].)

In this paper, we study Rk. In Section 2, we list previously known values of Rk.
In Section 3, we give basic properties and bounds on Rk. In Section 4, we analyze the
behavior of Rk(k+a, k+b), when a, b are fixed and k increases. In Section 5, we compute
various values of Rk, including nontrivial infinite families of values, as well as some values
determined using a computer. In Section 6, we continue our discussion of asymptotic
behavior of Rk. We turn our attention to Rk(a, a) when k is fixed and a increases.

For a graph G, we denote the vertex set of G by V (G). If T ⊆ V (G), then G[T ] is the
subgraph of G induced by T .

2 Previously Known Values

The following table shows the known values of R0(a, b)—that is, ordinary 2-color Ramsey
numbers—for 1 ≤ a, b ≤ 11. See the survey by Radziszowski [11, Sect. 2.1]. We use the
obvious facts that R0(1, b) = 1 and R0(2, b) = b; see Lemma 3.1(f) and (g).
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R0 1 2 3 4 5 6 7 8 9 10 11
1 1 1 1 1 1 1 1 1 1 1 1
2 1 2 3 4 5 6 7 8 9 10 11
3 1 3 6 9 14 18 23 28 36
4 1 4 9 18 25
5 1 5 14 25
6 1 6 18
7 1 7 23
8 1 8 28
9 1 9 36

10 1 10
11 1 11

The following table shows the known values of R1(a, b), for 2 ≤ a, b ≤ 10. These are
from Cockayne & Mynhardt [3]; also see Ekim & Gimbel [4]. We also use the facts that
R1(2, b) = 2 and R1(3, b) = b; see Lemma 3.1(f) and (g).

R1 2 3 4 5 6 7 8 9 10
2 2 2 2 2 2 2 2 2 2
3 2 3 4 5 6 7 8 9 10
4 2 4 6 9 11 16 17
5 2 5 9 15
6 2 6 11
7 2 7 16
8 2 8 17
9 2 9

10 2 10

The following table shows the previously known values of R2(a, b), for 3 ≤ a, b ≤ 7.
Of these, one nontrivial value was known before this work: R2(5, 5) = 7, from Ekim
& Gimbel [4, Thm. 3]. We also use the facts that R2(3, b) = 3 and R2(4, b) = b; see
Lemma 3.1(f) and (g).

R2 3 4 5 6 7 8
3 3 3 3 3 3 3
4 3 4 5 6 7 8
5 3 5 7
6 3 6
7 3 7
8 3 8

In Section 5 we will add to the above table.
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3 Basic Properties

The following lemma gives basic properties of k-sparseness and Rk. Some parts of the
lemma—(b), (e), (f), and special cases of (g)—were observed by Ekim & Gimbel [4,
Remarks 2, 3, 5–7] and Cockayne & Mynhardt [3, Prop. 1, Cor. 3(i)].

Lemma 3.1. Let k, a, and b be nonnegative integers. Then the following all hold.

(a) Let G be a graph, and let T ⊆ V (G) with |T | ≤ k + 1. Then T is k-sparse in G.

(b) Let G be a graph, and let T ⊆ V (G) with |T | = k + 2. Then either T is k-sparse in
G, or T is k-sparse in G.

(c) Let G be a graph, and let T ⊆ V (G). Then T is k-sparse in G iff every (k+2)-subset
of T is k-sparse in G.

(d) Rk+1(a, b) ≤ Rk(a, b).

(e) Rk(a, b) = Rk(b, a).

(f) If a ≤ k + 1 or b ≤ k + 1, then Rk(a, b) = min{a, b}.

(g) Rk(k + 2, b) = b.

Proof. (a) This is obvious.

(b) If T is not k-sparse in G, then some x ∈ T is adjacent to k + 1 other vertices of T ,
that is, to all other vertices of T . Thus, in the subgraph of G induced by T , x has degree
0, and every other vertex of T has degree at most k, since each such vertex is not adjacent
to x. Therefore, T is k-sparse in G.

(c) Clearly, if T is k-sparse in G, then every (k + 2)-subset of T is k-sparse in G.
If T is not k-sparse in G, then some x ∈ T is adjacent to at least k + 1 other vertices

of T . Let U ⊆ T consist of x and k + 1 of its neighbors. Then U is a (k + 2)-subset of T
that is not k-sparse in G.

(d) This follows from the fact that every k-sparse set is also (k + 1)-sparse.

(e) This is obvious.

(f) This follows from part (a).

(g) If b ≤ k + 1, then the result follows from part (f). Therefore, suppose that b ≥ k + 2.
Consider Kb−1. This graph does not contain a k-sparse set of order k+2. Furthermore,

since its order is less than b, there can be no set of b vertices that is k-sparse in the
complement. Thus, Rk(k + 2, b) ≥ b.

Now let G be a graph of order b containing no k-sparse set of order k + 2. By part
(b) every (k + 2)-vertex subset of V (G) is k-sparse in G. Therefore, by part (c), V (G) is
a b-vertex set that is k-sparse in G, and so Rk(k + 2, b) ≤ b. �
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The following lemma gives simple bounds for Rk. Part (b) generalizes a result of Burr,
Erdős, Faudree, & Shelp [1, Thm. 2], who proved it for k = 0. Part (c) was observed by
Ekim & Gimbel [4, Remark 4].

Lemma 3.2. Let k, a, b, c be nonnegative integers. Then the following hold.

(a) If a ≥ 1 and b ≥ k + 2, then Rk(a, b) ≥ Rk(a− 1, b) + 1.

(b) If a ≥ 2k + 1 and b, c ≥ 1, then Rk(a, b + c− 1) ≥ Rk(a, b) + Rk(a, c)− 1.

(c) If a, b ≥ 1, then Rk(a, b) ≤ Rk(a− 1, b) + Rk(a, b− 1).

Proof. (a) If a = 1, then the statement follows from Lemma 3.1(f).
Suppose a ≥ 2. Let n = Rk(a − 1, b) − 1. Note that n ≥ 0. Let G be a graph of

order n, such that G contains no (a− 1)-vertex k-sparse set, and G contains no b-vertex
k-sparse set.

Let G∗ be G with an additional isolated vertex x added. Then G∗ has order n + 1 =
Rk(a− 1, b), and G∗ contains no a-vertex k-sparse set. If n < k + 1, then, since b ≥ k + 2,
the graph G∗ has order less than b, and so it can contain no b-vertex k-sparse set. On the
other hand, if n ≥ k + 1, then adding x to some (b − 1)-vertex k-sparse set in G results
in a set inducing a subgraph in which x has degree greater than k. Thus G∗ contains no
b-vertex k-sparse set.

We conclude that Rk(a, b) is greater than the order of G∗; the statement follows.

(b) Let G1 be a graph of order Rk(a, b) − 1 such that G1 has no k-sparse a-set, and G1

has no k-sparse b-set. Similarly, let G2 be a graph of order Rk(a, c)− 1 such that G2 has
no k-sparse a-set, and G2 has no k-sparse c-set. Let G be the graph formed by taking the
disjoint union of G1 and G2 and adding all edges between vertices in G1 and vertices in
G2.

Graph G has order Rk(a, b) +Rk(a, c)− 2. We claim that G has no k-sparse a-set. To
see this, let S ⊆ V (G) with |S| = a. If S lies entirely in either G1 or G2, then S is not
k-sparse. Thus, since a ≥ 2k + 1, set S must contain at least k + 1 vertices of either G1

or G2, and it must contain a vertex v in the other Gi. This vertex v thus has degree at
least k + 1 in the subgraph of G induced by S. We see that S is not k-sparse.

Further, G has no k-sparse (b + c − 1)-set, since any (b + c − 1)-set in V (G) must
contain either b vertices of G1 or c vertices of G2, in which case it is not k-sparse in G.

We conclude that Rk(a, b+c−1) is greater than the order of G; the statement follows.

(c) Let n = Rk(a−1, b)+Rk(a, b−1), and let G be a graph of order n. Let x ∈ V (G). Then
either x has at least Rk(a − 1, b) non-neighbors or x has at least Rk(a, b − 1) neighbors.
We consider the former case; the other is handled similarly.

Let T be the set of non-neighbors of x. If T has a b-vertex subset that is k-sparse in
G, then we are done. Otherwise, T must have an (a− 1)-vertex subset U that is k-sparse
in G. Then U ∪ {x} is an a-vertex set that is k-sparse in G. �

It seems likely that part (b) of Lemma 3.2 holds for smaller values of a, perhaps for
a ≥ k + 2.
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4 Asymptotic Behavior I

In the following proposition, we use Lemma 3.2 to establish bounds on Rk(k + a, k + b)
in terms of k, a, and b.

Proposition 4.1. Let k ≥ 0, and let a, b ≥ 2. Then the following hold.

(a) Rk(k + a, k + b) ≥ k + a + b− 2.

(b) Rk(k + a, k + b) ≤
(
a+b−4
a−2

)
k +

(
a+b−2
a−1

)
.

Proof. (a) We proceed by induction on a. In the base case, a = 2. We need to show that
Rk(k + 2, k + b) ≥ k + b. This follows from Lemma 3.1(g).

If a > 2, then we apply Lemma 3.2(a) to obtain

Rk(k + a, k + b) ≥ Rk(k + a− 1, k + b) + 1

≥ (k + a + b− 3) + 1

= k + a + b− 2.

(b) We proceed by induction, first on a, and then on b. If a = 2, then the right-hand side
of the inequality equals k + b, and we need to show that Rk(k + 2, k + b) ≤ k + b. This
follows from Lemma 3.1(g). The inequality similarly holds when b = 2.

Now assume that a, b ≥ 3, and that the inequality holds for all smaller values of a
and, with the given value of a, for all smaller values of b. Apply Lemma 3.2(c) to obtain

Rk(k + a, k + b) ≤ Rk(k + a− 1, k + b) + Rk(k + a, k + b− 1)

≤
[(

a + b− 5

a− 3

)
k +

(
a + b− 3

a− 2

)]
+

[(
a + b− 5

a− 2

)
k +

(
a + b− 3

a− 1

)]
=

(
a + b− 4

a− 2

)
k +

(
a + b− 2

a− 1

)
. �

Proposition 4.1 implies that, for fixed a, b, the value of Rk(k + a, k + b) is Θ(k). We
will prove a stronger statement: that this value is k + O(1)—thus showing that part
(b) of Proposition 4.1 is far from best possible. We begin by finding exact formulas for
Rk(k + a, k + a) when k is sufficiently large.

Theorem 4.2. Let k, a ≥ 0. Then the following hold.

(a) If k ≥ a− 3, then Rk(k + a, k + a) ≥ k + 3a− 4.

(b) If a ≥ 2 and k ≥ 3a− 6, then Rk(k + a, k + a) = k + 3a− 4.

Proof. (a) If a = 0, 1, then the statement follows from Lemma 3.1(f). If a = 2, then the
statement follows from Lemma 3.1(g).

Suppose that a ≥ 3 and k ≥ a − 3. Define a graph Dk,a as follows. Let P , Q, R be
disjoint sets of vertices with |P | = |Q| = 2a − 4 and |R| = k − (a − 3). Let the vertex
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set of Dk,a be P ∪ Q ∪ R. Add edges: let the edges between sets P , Q form a regular
bipartite graph with degree a− 2. Let each vertex of Q be adjacent to every other vertex
of Q and every vertex of R. This defines Dk,a. Note that P ∪R is an independent set in
Dk,a, while Q induces a complete subgraph.

Dk,a has order (2a− 4) + (2a− 4) + [k − (a− 3)] = k + 3a− 5. Thus, to obtain a set
of k + a vertices of Dk,a, we would remove 2a− 5 vertices.

Let S ⊆ V (Dk,a) with |S| = k+a. The set Q contains 2a−4 vertices. Thus, S contains
at least 1 vertex of Q. Each vertex in Q has degree (a − 2) + (2a − 5) + [k − (a − 3)] =
k + 2a − 4. Thus, the subgraph of Dk,a induced by S has a vertex of degree at least
(k + 2a− 4)− (2a− 5) = k + 1, and so S cannot be k-sparse in Dk,a.

Similarly, the set P contains 2a− 4 vertices. Thus, S contains at least 1 vertex of P .
Each vertex in P has degree a− 2. Thus, the subgraph of Dk,a induced by S has a vertex
of degree at most a− 2, which has degree at least (k + a− 1)− (a− 2) = k + 1 in Dk,a.
Hence, S cannot be k-sparse in Dk,a.

We see that Dk,a is a graph of order k+3a−5 such that neither Dk,a nor its complement
has a k-sparse set of k + a vertices. Statement (a) follows.

(b) Because a ≥ 2 and k ≥ 3a − 6, we have k ≥ a − 3, and so we can apply part (a). It
remains to show that Rk(k + a, k + a) ≤ k + 3a − 4. Suppose for a contradiction that
this is false. Then there must exist a graph G with order k + 3a − 4, such that each
(k + a)-vertex subset of V (G) is k-sparse in neither G nor G. That is, each (k + a)-vertex
subset of V (G) induces a subgraph of G having a vertex of degree at least k + 1 and a
vertex of degree at most a− 2 = (k + a− 1)− (k + 1).

We say a vertex v is strong in G if there exists some (k + a)-vertex induced subgraph
of G in which v has degree at least k + 1. Thus v is strong in G iff the degree of v in G
is at least k + 1.

We say a vertex v is weak in G if there exists some (k + a)-vertex induced subgraph
of G in which v has degree at most a− 2. Thus v is weak in G iff the degree of v in G is
at most 3a− 6 = (a− 2) + [(k + 3a− 4)− (k + a)].

Note that k + 1 > 3a− 6, and so no vertex can be both strong and weak in G. (Note:
This is why we need k ≥ 3a− 6.)

There must exist at least 2a− 3 weak vertices, since, otherwise, we can remove 2a− 4
vertices (noting that 2a − 4 ≥ 0, since a ≥ 2), leaving a set of k + a vertices, none of
which is weak in G. Such a set would be k-sparse in G.

We say a vertex v that is weak in G is special if v is adjacent to at most a− 2 strong
vertices in G. If we remove 2a − 4 weak vertices from G, then the resulting induced
subgraph has order k + a, and so must contain a vertex x of degree at most a− 2. Since
we only removed weak vertices, and no weak vertex is strong, the subgraph must contain
every strong vertex of G, and so x is a special weak vertex. Since we can remove any
collection of 2a− 4 weak vertices of G and find a special weak vertex in what remains, G
must contain at least 2a− 3 special weak vertices.

Let S ⊆ V (G) be a set of 2a − 3 special weak vertices. Let T ⊆ V (G) be the set of
all strong vertices of G that are adjacent to more than a− 2 vertices of S. Note that S,
T are disjoint. Because each vertex in S is adjacent to at most a− 2 strong vertices, we
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have |T | < |S| = 2a− 3, and so |V (G)− T | ≥ k + a.
Let U be a set of k + a vertices of G, such that S ⊆ U ⊆ V (G) − T . Such a set U

exists, because a − 3 ≤ k, and so |S| = 2a − 3 ≤ k + a = |U |. We claim that this U is
k-sparse (which would be a contradiction). To see this, consider a vertex z ∈ U . If z is
not strong in G, then z has degree at most k. If z is strong in G, then, since z 6∈ T , z
is adjacent to at most a − 2 vertices of S. There are (k + a) − (2a − 3) − 1 = k − a + 2
vertices of U , other than z, that do not lie in S. Thus, in the subgraph of G induced by
U , vertex z has degree at most (a− 2) + (k − a + 2) = k. We see that U is k-sparse.

By contradiction, statement (b) is proven. �

Using Theorem 4.2, we can show that, for fixed a, b, the value of Rk(k + a, k + b) is
k + O(1).

Corollary 4.3. For each pair of integers a, b, there exist constants `a,b and ua,b so that

`a,b ≤ Rk(k + a, k + b)− k ≤ ua,b

for all k ≥ 0 for which Rk(k + a, k + b) is defined.

Proof. Fix integers a, b. Without loss of generality, say a ≥ b. If b < 2, then the result
follows from Lemma 3.1(f), with `a,b = ua,b = b.

Suppose that b ≥ 2; then a ≥ 2 as well. Let `a,b, ua,b be defined as follows.

`a,b = a + b− 2;

ua,b = max
0≤k≤3a−6

[Rk(k + a, k + a)− k] .

The lower bound now follows from Proposition 4.1(a). We consider the upper bound.
Note that ua,b is well defined, since we take the maximum value of a nonempty finite set.

By Lemma 3.2(a), since a ≥ b, we have Rk(k + a, k + b) ≤ Rk(k + a, k + a). It thus
suffices to show that Rk(k + a, k + a)− k ≤ ua,b. When k ≤ 3a− 6 this follows from the
definition of ua,b. If k > 3a− 6, then we have

Rk(k + a, k + a)− k = 3a− 4 by Theorem 4.2(b)

= R3a−6([3a− 6] + a, [3a− 6] + a)− [3a− 6] by Theorem 4.2(b)

≤ ua,b. �

It appears that, for fixed a, b ≥ 0, the value Rk(k + a, k + b) − k is maximized when
k = 0, and thus that we can set ua,b = R(a, b) in Corollary 4.3.

Conjecture 4.4. If k, a, b ≥ 0, then Rk(k + a, k + b)− k ≤ R(a, b). �

Conjecture 4.4 would follow from the following stronger conjecture.

Conjecture 4.5. For fixed integers a, b, the sequence of values of Rk(k + a, k + b)− k is
nonincreasing. �

We will discuss asymptotic behavior again later, in Section 6, after we determine a
number of previously unknown values of Rk.
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5 Specific Values

Using Theorem 4.2, we can establish, for each k, the first nontrivial value of Rk. That is,
we find the first value that is not given by Lemma 3.1.

Corollary 5.1. Let k ≥ 0. Then,

Rk(k + 3, k + 3) =

{
6, if k = 0,

k + 5, otherwise.

Proof. When k = 0 we use the well known result that R(3, 3) = 6 (noted by Greenwood
& Gleason [8, p. 3]). The case k = 1 was proven by Cockayne & Mynhardt [3, Cor. 3(ii)].
The case k = 2 was proven by Ekim & Gimbel [4, Thm. 3].

When k ≥ 3, we set a = 3, note that k ≥ 3a− 6, and apply Theorem 4.2(b). �

Now we determine a number of previously unknown individual values of Rk(a, b). We
will give the full proof for one value: R2(5, 6) = 8. For the others, we give proofs for the
lower bounds; the upper bounds were verified using a computer.

Theorem 5.2. R2(5, 6) = 8.

Proof. For convenience, we will actually prove that R2(6, 5) = 8. The lower bound follows
from Lemma 3.2(a) and the fact that R2(5, 5) = 7 (proven by Ekim & Gimbel [4, Thm. 3]).

For the upper bound, suppose for a contradiction that there exists a graph G of order
8, such that there is no 2-sparse set of order 6 in G, and there is no 2-sparse set of order 5
in G. We note that G can contain neither a 5-cycle nor K2,3 as a subgraph (not necessarily
induced), for otherwise G would contain a 2-sparse set of order 5.

Maximum Degree at Most 3—We claim that G has maximum degree at most 3.
Suppose for a contradiction that G has a vertex v of degree at least 4. Let S ⊆ V (G)

be a set of 4 vertices that belong to the open neighborhood of v. Let T = V (G)−[S∪{v}];
note that |T | = 3. The S-degree of a vertex that does not lie in S, is defined to be the
cardinality of the intersection of its open neighborhood with S. Say T = {x, y, z}, with
the S-degree of x being at least that of y, which, in turn, is at least that of z.

As G does not contain a 5-cycle, we see that G[S] cannot contain a path on four
vertices. As G does not contain K2,3, we see that S is 2-sparse. Thus, G[S] is isomorphic
to a subgraph of either K3 ∪K1 or K2 ∪K2.

S-Degree at Most 1. We wish to show that, for S, T defined above, each vertex in T
has S-degree at most 1. If x has S degree 3 or more, then G contains a K2,3. We may
thus assume that every vertex in T has S-degree at most 2.

Suppose that x has S-degree exactly 2. Then the 2 neighbors of x in S might be
adjacent, but cannot be adjacent to other vertices of S, for otherwise G would contain a
5-cycle. In particular, S must be 1-sparse in G.

Suppose that y also has S-degree exactly 2. Then, as G contains no 5-cycle, x and
y must be nonadjacent. As G does not contain a K2,3, we see that x and y cannot have
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exactly the same neighborhood in S. If x and y have a common neighbor in S, then S is
an independent set, and S ∪ {x, y} forms a 2-sparse set of order six. On the other hand,
if x and y each have S-degree 2, but share no common neighbor, then S ∪ {x, y} induces
a subgraph of two disjoint triangles, and hence is 2-sparse. We see that y has S-degree at
most 1.

If y and z have a common neighbor w ∈ S, then neither y nor z can be adjacent to x,
since G contains no 5-cycle, and so (S ∪ T )−{w} is a 2-sparse 6-set. On the other hand,
if there is no such w, then S ∪ {y, z} is a 2-sparse 6-set.

Thus, we have shown that each vertex of T has S-degree at most 1.

Finishing the Maximum Degree 3 Proof. We now complete the verification of our
claim that G has maximum degree at most 3. Recall that G[S] is isomorphic to a subgraph
of either K3 ∪K1 or K2 ∪K2.

We wish to show, first, that there is at most 1 vertices in G[S∪T ] with degree at least
4, and, second, that if 2 vertices in G[s∪T ] have degree at least 3, then they are adjacent.

For the first part, note that S, T are each 2-sparse. Thus, any vertex lying in one of
these sets and having degree at least 4 in G[S ∪T ], must be adjacent to at least 2 vertices
in the other set. Since there are at most 3 edges between S, T , there can be only 1 such
vertex.

For the second part, let a, b be vertices of degree at least 3 in G[S ∪ T ]. Suppose that
a ∈ T . If b ∈ T , then G[T ] is K3, and so a, b are adjacent. On the other hand, if b ∈ S,
then a must be adjacent to both other vertices of T . Since G contains no 5-cycle, there
can be only one vertex in S that is adjacent to a vertex of T . This vertex must thus be
b, and so a, b are adjacent.

Now suppose that a, b ∈ S. Then one of the two has degree at least 2 in G[S], while
the other has degree at least 1. Considering the possible isomorphism classes of G[S], we
see that a, b must be adjacent.

The first and second parts, above, having been verified, we conclude that removing a
vertex of maximum degree from G[S ∪ T ] leaves a 2-sparse set of 6 vertices.

Thus, our claim holds: G has maximum degree at most 3.

Triangle Free—We claim that G is triangle-tree.
Suppose for a contradiction that G contains a triangle. Let N be the set of vertices

that do not lie in the triangle, and have at least one neighbor in the triangle. Because G
has maximum degree at most 3, each vertex in the triangle has at most 1 neighbor in N ,
and so |N | ≤ 3. If |N | ≤ 2, then the vertices of the triangle together with 3 other vertices
that do not lie in N , form a 2-sparse 6-set. Thus |N | = 3, and so there is a matching
between the triangle and N .

Let u, v be the 2 vertices of G in neither the triangle nor in N . As G contains no
5-cycle, neither u nor v can have more than 1 neighbor in N , and G[N ] can have no edges.
If u and v have a common neighbor, say w, then the removal of the neighbor of w in the
triangle leaves a 2-sparse set. On the other hand, if u and v do not share a common
neighbor, then the removal of any vertex in the triangle leaves a 2-sparse set.

Thus, our claim holds: G is triangle-free.
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Handling a Bipartite Graph—Suppose that G is not bipartite. Then G contains an
induced odd cycle. As this cycle can be neither a triangle nor a 5-cycle, it must be an
induced 7-cycle, which is 2-sparse. We may thus assume that G is bipartite.

Let A, B be the partite sets of G, where |A| ≤ |B|. As B is 2-sparse, we must have
|B| ≤ 5. Accordingly, |B| ∈ {4, 5}.

We first consider the case |B| = 4.
Suppose that both A and B contain a vertex of degree 3. If these 2 vertices are

nonadjacent, then the removal of both vertices leaves a 2-sparse 6-set. Thus, each vertex
of degree 3 in A must be adjacent to each vertex of degree 3 in B. The removal of one
such vertex from A and one from B leaves a 2-sparse 6-set. We may thus assume, without
loss of generality, that A contains no vertices of degree 3.

The set B cannot contain 3 vertices of degree 3, since these would necessarily have a
common neighbor, which would be a vertex of degree 3 in A. Hence, we may remove 2
vertices of B to obtain a 2-sparse 6-set.

In our final case, we have |B| = 5, and hence |A| = 3.
If B contains at least 2 vertices of degree 3, then G contains a K2,3. If B contains

exactly 1 vertex of degree 3, then the removal of this vertex leaves a 2-sparse set. Thus, B
contains no vertices of degree 3. If at most 2 vertices of A have degree 3, then we remove
them and produce a 2-sparse set. We may thus assume that all vertices of A have degree
3. Hence some vertex of B must have degree 2. Remove this vertex and its nonneighbor
in A; what remains is a 2-sparse set of 6 vertices.

This exhausts all cases. Thus, no such G exists; our desired conclusion follows. �

Using a computer program, we have determined other values of Rk. Our software is
written in the Python programming language; it is available via the Worldwide Web [2].

We have also been able to enumerate the number of extremal graphs for these values
of Rk. A graph G is extremal for Rk(a, b) if G has order Rk(a, b) − 1, G contains no
k-sparse set of a vertices, and G contains no k-sparse set of b vertices. Informally, G is
extremal if its existence shows that Rk(a, b) is at least its actual value.

Proposition 5.3. The following all hold.

(a) R2(5, 7) = 10, with exactly 16 extremal graphs.

(b) R2(5, 8) = 12, with exactly 8 extremal graphs.

(c) R2(6, 6) = 12, with exactly 2 extremal graphs.

(d) R3(6, 7) = 9, with exactly 28 extremal graphs.

(e) R3(6, 8) = 10, with exactly 159 extremal graphs.

(f) R3(6, 9) = 12, with exactly 4 extremal graphs.

(g) R3(7, 7) = 11, with exactly 4 extremal graphs.
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(h) R3(7, 8) = 13, with exactly 43 extremal graphs.

(i) R4(7, 8) = 10, with exactly 84 extremal graphs.

(j) R4(7, 9) = 11, with exactly 550 extremal graphs.

(k) R4(7, 10) = 13, with exactly 4 extremal graphs.

(l) R4(8, 8) = 12, with exactly 8 extremal graphs.

(m) R5(8, 9) = 11, with exactly 316 extremal graphs.

(n) R5(8, 10) = 12, with exactly 2430 extremal graphs.

(o) R5(9, 9) = 13, with exactly 22 extremal graphs.

(p) R6(9, 10) = 12, with exactly 1712 extremal graphs.

The upper bounds were all verified using a computer program [2]. We give proofs for
the lower bounds.

Proof of Lower Bounds. (a) For the lower bound, we can use the following 9-vertex graph
G, which is extremal for R2(7, 5). Begin with a 6-cycle. Let S be an independent set of 3
vertices in this cycle. For each v ∈ S, add a new vertex v′ having the same neighbors as
v. Let G be the resulting graph.

Then G has no 7-vertex 2-sparse set and G has no 5-vertex 2-sparse set, showing that
R2(7, 5) > 9.

(b) For the lower bound, we can use the following 11-vertex graph G, which is extremal for
R2(8, 5). The vertex set of G is {1, 2, 3, a, b, c, d, w, x, y, z}, with edges as follows. Vertices
a, b, c, d induce a K4. Vertices w, x, y, z induce a K4. Vertex 1 is adjacent to a and w.
Vertex 2 is adjacent to b and x. Vertex 3 is adjacent to c and y.

Then G has no 8-vertex 2-sparse set and G has no 5-vertex 2-sparse set, showing that
R2(8, 5) > 11.

(c) For the lower bound, we can use the following 11-vertex graph G, which is extremal for
R2(6, 6). The vertex set of G is {1, 2, 3, 4, a, b, c, d, t, x, y}, with edges as follows. Vertices
1, a, 2, b, 3, c, 4, d form an 8-cycle, in that order. The set {a, b, c, d, t} induces a K5. Each
vertex of {1, 2, 3, 4} is adjacent to each vertex of {x, y}, and t is adjacent to y.

Then G has no 6-vertex 2-sparse set and G has no 6-vertex 2-sparse set, showing that
R2(6, 6) > 11.

(d) The lower bound follows from Lemma 3.2(a) and the fact that R3(6, 6) = 8, by
Theorem 4.2(b).

(e) The lower bound follows from Lemma 3.2(a) and the fact that R3(6, 7) = 9, from part
(d).

(f) For the lower bound, we can use the following 11-vertex graph G, which is extremal for
R3(9, 6). The vertex set of G is {1, 2, 3, 4, 5, 6, a, b, c, x, y}, with edges as follows. Vertices
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a, b, c, x, y induce a K5. Vertices 1, 2 are each adjacent to a. Vertices 3, 4 are each adjacent
to b. Vertices 5, 6 are each adjacent to c.

Then G has no 9-vertex 3-sparse set and G has no 6-vertex 3-sparse set, showing that
R3(9, 6) > 11.

(g) The lower bound follows from Theorem 4.2(a).

(h) For the lower bound, we can use the following 12-vertex graph G, which is extremal
for R3(8, 7). The vertex set of G is {1, 2, 3, 4, 5, a, b, c, d, e, f, x}, with edges as follows.
Vertices a, b, c, d, e, f induce a K6. Vertices 1, 2 are each adjacent to a and b. Vertices 3,
4 are each adjacent to c and d. Vertex 5 is adjacent to e and f . Vertex x is adjacent to
1, 2, 3, 4, 5, and 6.

Then G has no 8-vertex 3-sparse set and G has no 7-vertex 3-sparse set, showing that
R3(8, 7) > 12.

(i) The lower bound follows from Lemma 3.2(a) and the fact that R4(7, 7) = 9, by Theo-
rem 4.2(b).

(j) The lower bound follows from Lemma 3.2(a) and the fact that R4(7, 8) = 10, from
part (i).

(k) For the lower bound, we can use the following 12-vertex graph G, which is extremal
for R4(10, 7). The vertex set of G is {1, 2, 3, 4, 5, 6, a, b, c, x, y, z}, with edges as follows.
Vertices a, b, c, x, y, z induce a K6. Vertices 1, 2 are each adjacent to a. Vertices 3, 4 are
each adjacent to b. Vertices 5, 6 are each adjacent to c.

Then G has no 10-vertex 4-sparse set and G has no 7-vertex 4-sparse set, showing that
R4(10, 7) > 12.

(l) The lower bound follows from Theorem 4.2(a).

(m) The lower bound follows from Lemma 3.2(a) and the fact that R5(8, 8) = 10, by
Theorem 4.2(b).

(n) The lower bound follows from Lemma 3.2(a) and the fact that R5(8, 9) = 11, from
part (m).

(o) The lower bound follows from Theorem 4.2(a).

(p) The lower bound follows from Lemma 3.2(a) and the fact that R6(9, 9) = 11, by
Theorem 4.2(b). �

Remark 5.4. Using our computer program [2], we determined that there are exactly 13
extremal graphs for R2(5, 6). �

We can now update our tables of values of Rk. Note that we have computed no new
values of R0 or R1.

The following table shows the values of R2(a, b) that we have found, for 3 ≤ a, b ≤ 10.
These are from Lemma 3.1(f) and (g), Ekim & Gimbel [4, Thm. 3] (for R2(5, 5) = 7),
Theorem 5.2, and Proposition 5.3. Newly established values are shown in boldface.
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R2 3 4 5 6 7 8 9 10
3 3 3 3 3 3 3 3 3
4 3 4 5 6 7 8 9 10
5 3 5 7 8 10 12
6 3 6 8 12
7 3 7 10
8 3 8 12
9 3 9

10 3 10

The following table shows the values of R3(a, b) that we have found, for 4 ≤ a, b ≤ 11.
These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3. Again, newly
established values are shown in boldface.

R3 4 5 6 7 8 9 10 11
4 4 4 4 4 4 4 4 4
5 4 5 6 7 8 9 10 11
6 4 6 8 9 10 12
7 4 7 9 11 13
8 4 8 10 13
9 4 9 12

10 4 10
11 4 11

The following table shows the values of R4(a, b) that we have found, for 5 ≤ a, b ≤ 12.
These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3.

R4 5 6 7 8 9 10 11 12
5 5 5 5 5 5 5 5 5
6 5 6 7 8 9 10 11 12
7 5 7 9 10 11 13
8 5 8 10 12
9 5 9 11

10 5 10 13
11 5 11
12 5 12

The following table shows the values of R5(a, b) that we have found, for 6 ≤ a, b ≤ 13.
These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3.
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R5 6 7 8 9 10 11 12 13
6 6 6 6 6 6 6 6 6
7 6 7 8 9 10 11 12 13
8 6 8 10 11 12
9 6 9 11 13

10 6 10 12
11 6 11
12 6 12
13 6 13

The following table shows the values of R6(a, b) that we have found, for 7 ≤ a, b ≤ 14.
These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3.

R6 7 8 9 10 11 12 13 14
7 7 7 7 7 7 7 7 7
8 7 8 9 10 11 12 13 14
9 7 9 11 12

10 7 10 12 14
11 7 11
12 7 12
13 7 13
14 7 14

The following table shows the values of R7(a, b) that we have found, for 8 ≤ a, b ≤ 15.
These are from Lemma 3.1(f) and (g), and Theorem 4.2(b).

R7 8 9 10 11 12 13 14 15
8 8 8 8 8 8 8 8 8
9 8 9 10 11 12 13 14 15

10 8 10 12
11 8 11 15
12 8 12
13 8 13
14 8 14
15 8 15

Remark 5.5. We have determined Rk(a, b) for all k, a, b for which Rk(a, b) ≤ 12. These
are the values corresponding to entries in the above tables that are at most 12, along with
other values that can easily be computed using Lemma 3.1(f) and (g). �

6 Asymptotic Behavior II

Once again, we are interested in the behavior of Rk(k + a, k + b) when a, b are fixed and
k increases. We know the following, from Corollary 5.1.
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Rk(k + 3, k + 3) value
R0(3, 3) 6
R1(4, 4) 6
R2(5, 5) 7
R3(6, 6) 8
R4(7, 7) 9
R5(8, 8) 10

The values below are from Greenwood & Gleason [8, p. 4] (for R0(4, 4) = 18), Cockayne
& Mynhardt [3, Cor. 3(iii)] (for R1(5, 5) = 15), Proposition 5.3, and Theorem 4.2.

Rk(k + 4, k + 4) value
R0(4, 4) 18
R1(5, 5) 15
R2(6, 6) 12
R3(7, 7) 11
R4(8, 8) 12
R5(9, 9) 13
R6(10, 10) 14
R7(11, 11) 15
R8(12, 12) 16
R9(13, 13) 17

More generally, we have the following.

Proposition 6.1. For all k ≥ 0, we have the following.

(a) Rk(k + 3, k + 3) = max{6, 5 + k}.

(b) Rk(k + 4, k + 4) = max{18− 3k, 8 + k}. �

In both cases above, the Ramsey number is the maximum of two polynomials of degree
at most 1 in k. Based on this, we indulge in wild speculation: does this continue to be
true for other Rk(k + a, k + a)? For other Rk(k + a, k + b)?

It appears that, for fixed a, there is a unique ka such that the values Rk(k + a, k + a)
are nonincreasing for k ≤ ka, and increasing for k ≥ ka. For example, we have k3 = 1 and
k4 = 3. We ask about the behavior of this ka.

Question 6.2. Does this value ka exist for each a? If so, what is the behavior of ka as a
grows? �

We have discussed the behavior of Rk(k + a, k + b) when a, b are fixed and k grows
large. What about when k is fixed and a, b increase? We establish bounds for the diagonal
values Rk(a, a). We will make use of the following theorem due to Erdős & Gimbel [6,
Thm. 3]. (Note that a statement almost surely holds, if the probability of it holding
converges to 1—in this case, as n→∞.)

16



Theorem 6.3 (Erdős & Gimbel 1991 [6, Thm. 3]). Given a fixed graph H and a random
graph G of order n, the largest H-free subgraph of G almost surely has cardinality less
than c lnn where c is dependent only on H. �

The following theorem generalizes a result of Erdős [5, Thm. 1], who proved it for
k = 0 (with t =

√
2 for a ≥ 3). (Erdős attributes the special case of part (b) when k = 0

to G. Szekeres, citing a paper of Erdős & Szekeres [7].)

Theorem 6.4. Let k be a nonnegative integer.

(a) There exists a constant t = t(k) > 1 such that, if a ≥ 2, then Rk(a, a) > ta.

(b) If a ≥ k + 2, then Rk(a, a) < 4a−k−2(k + 4).

Proof. (a) Let H be the graph formed by the disjoint union of K1,k+1 and K1. Let c
be that given by Theorem 6.3 for this H. Let n =

⌊
ea/c
⌋
. By Theorem 6.3, if n is

sufficiently large, then there exists a graph G of order n such that every subset of V (G)
with cardinality at least c lnn induces a subgraph of G containing a copy of H; thus,
every subset of cardinality at least a induces such a subgraph. By definition of H, this
subgraph is k-sparse in neither G nor G, and so Rk(a, a) > n. Thus, Rk(a, a) >

(
e1/c
)a

,

when n =
⌊
ea/c
⌋

is sufficiently large.
We have verified the statement for sufficiently large a, since, if a is large, then n is

large. We can verify the statement for all a ≥ 2 using reasoning similar to that in the
proof of the upper bound in Corollary 4.3. Let a0 be the least “sufficiently large” value
of a, or 2 if this value is less than 2. Let t0 be defined as follows.

t0 = min
2≤a≤a0

[(
Rk(a, a)− 1

2

)1/a
]
.

Note that this is well defined, since, first, for a ≥ 2 we have Rk(a, a) ≥ 2, and so the
number being raised to a power is greater than 1, while the exponent is positive, and,
second, t0 is the minimum value of a nonempty finite set.

Lastly, we set t = min
{
t0, e

1/c
}

. We can see that, for this t, we have Rk(a, a) > ta for
all a ≥ 2.

(b) We can apply Proposition 4.1(b) to show that

Rk(a, a) ≤
(

2a− 2k − 4

a− k − 2

)
k +

(
2a− 2k − 2

a− k − 1

)
.

The desired statement then follows from the fact that
(
2s
s

)
< 4s when s ≥ 1 (this bound

can be proven using a simple inductive argument). �

We see that, for fixed k, the values of Rk(a, a) grow exponentially (and thus the values
of Rk(k + a, k + a) do as well).

Corollary 6.5. For fixed k, the value of logRk(a, a) is Θ(a). �
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[7] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math.
2 (1935), 463–470.

[8] R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs,
Canad. J. Math. 7 (1955), 1–7.

[9] H. Harborth and I. Mengersen, All Ramsey numbers for five vertices and seven or
eight edges, Discrete Math. 73 (1989), no. 1-2, 91–98.

[10] G. R. T. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory 13
(1989), 245–248.

[11] S. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2009), Dynamic
Survey 1, revision #12: August 4, 2009, 72 pp. (electronic).

18


	Introduction
	Previously Known Values
	Basic Properties
	Asymptotic Behavior I
	Specific Values
	Asymptotic Behavior II

