On Defective Ramsey Numbers (DRAFT)

Glenn G. Chappell
Department of Computer Science
University of Alaska
Fairbanks, AK 99775-6670
chappellg@member.ams.org

John Gimbel
Department of Mathematics and Statistics
University of Alaska
Fairbanks, AK 99775-6660
jggimbel@alaska.edu

March 4, 2011

2010 Mathematics Subject Classification. Primary 05C55; Secondary 05D10. Key words and phrases. Defective Ramsey number, sparse, dense.

Abstract

If T is a set of vertices of a graph G, then T is k-sparse in G if the subgraph of G induced by T has maximum degree at most k. Following Ekim \& Gimbel [4], we define generalized Ramsey numbers: $R_{k}(a, b)$, for nonnegative integers k, a, b, is the least n such that, for each graph G of order n, either G contains a k-sparse set of a vertices, or the complement of G contains a k-sparse set of b vertices. We study R_{k}, proving basic properties and bounds.

We compute various values of R_{k}. We show that, if $a \geq 2$ and $k \geq 3 a-6$, then $R_{k}(k+a, k+a)=k+3 a-4$. We compute other specific values of $R_{k}(a, b)$, some using a computer. In particular, we determine $R_{k}(a, b)$ for all k, a, b for which this value is at most 12 .

We also analyze certain asymptotic behaviors of R_{k}. We show that, for fixed a, b, the value of $R_{k}(k+a, k+b)$ is $k+O(1)$. We further show that, for fixed k, the value of $\log R_{k}(a, a)$ is $\Theta(a)$.

1 Introduction

Let k be a nonnegative integer. Given a (finite, undirected) graph G, a set T of vertices of G is k-sparse in G if the subgraph of G induced by T has maximum degree at most k. Some authors refer to a k-sparse set as " k-dependent". A 0 -sparse set is the same as an independent set.

Following Ekim \& Gimbel [4] we define generalized Ramsey numbers: $R_{k}(a, b)$ is the least n such that, for each graph G of order n, either G contains a k-sparse set of a vertices, or \bar{G} contains a k-sparse set of b vertices. Note that that values of R_{0} are the usual 2-color Ramsey numbers.

Note that the function R_{k} can be thought of in a graph Ramsey number context. If \mathcal{A}, \mathcal{B} are sets of graphs, then $R(\mathcal{A}, \mathcal{B})$ is the least n such that, for each graph G of order n, either G contains a subgraph isomorphic to an element of \mathcal{A}, or \bar{G} contains a subgraph isomorphic to an element of \mathcal{B}. Say a graph H is k-dense if $V(H)$ is k-sparse in \bar{H}. Let \mathcal{A} be the set of all k-dense graphs on a vertices, and let \mathcal{B} be the set of all k-dense graphs on b vertices. It is not hard to see that $R_{k}(a, b)=R(\mathcal{A}, \mathcal{B})$.

Thus, when we find values of R_{k}, we are also determining more traditional graph Ramsey numbers.

Such reasoning has been used, for example, by Cockayne \& Mynhardt [3, Cor. 3(iii)], to determine $R_{1}(5,5)$. The 4 -spoke wheel, W_{4}, is 1 -dense. Further, every 1-dense graph of order 5 has a subgraph isomorphic to W_{4}. Thus, $R_{1}(5,5)=R\left(W_{4}, W_{4}\right)$. Cockayne \& Mynhardt reference Harborth \& Mengersen [9, Thm. 2], who showed that $R\left(W_{4}, W_{4}\right)=15$. (That $R\left(W_{4}, W_{4}\right)=15$ was also stated without proof by Hendry [10; see Radziszowski [11, Sect. 4.2].)

In this paper, we study R_{k}. In Section 2, we list previously known values of R_{k}. In Section 3, we give basic properties and bounds on R_{k}. In Section 4, we analyze the behavior of $R_{k}(k+a, k+b)$, when a, b are fixed and k increases. In Section 5 , we compute various values of R_{k}, including nontrivial infinite families of values, as well as some values determined using a computer. In Section 6, we continue our discussion of asymptotic behavior of R_{k}. We turn our attention to $R_{k}(a, a)$ when k is fixed and a increases.

For a graph G, we denote the vertex set of G by $V(G)$. If $T \subseteq V(G)$, then $G[T]$ is the subgraph of G induced by T.

2 Previously Known Values

The following table shows the known values of $R_{0}(a, b)$-that is, ordinary 2-color Ramsey numbers-for $1 \leq a, b \leq 11$. See the survey by Radziszowski [11, Sect. 2.1]. We use the obvious facts that $R_{0}(1, b)=1$ and $R_{0}(2, b)=b$; see Lemma 3.1(f) and (g).

R_{0}	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	1	1	1	1	1	1	1	1
2	1	2	3	4	5	6	7	8	9	10	11
3	1	3	6	9	14	18	23	28	36		
4	1	4	9	18	25						
5	1	5	14	25							
6	1	6	18								
7	1	7	23								
8	1	8	28								
9	1	9	36								
10	1	10									
11	1	11									

The following table shows the known values of $R_{1}(a, b)$, for $2 \leq a, b \leq 10$. These are from Cockayne \& Mynhardt [3]; also see Ekim \& Gimbel [4]. We also use the facts that $R_{1}(2, b)=2$ and $R_{1}(3, b)=b$; see Lemma 3.1(f) and (g).

R_{1}	2	3	4	5	6	7	8	9	10
2	2	2	2	2	2	2	2	2	2
3	2	3	4	5	6	7	8	9	10
4	2	4	6	9	11	16	17		
5	2	5	9	15					
6	2	6	11						
7	2	7	16						
8	2	8	17						
9	2	9							
10	2	10							

The following table shows the previously known values of $R_{2}(a, b)$, for $3 \leq a, b \leq 7$. Of these, one nontrivial value was known before this work: $R_{2}(5,5)=7$, from Ekim \& Gimbel [4, Thm. 3]. We also use the facts that $R_{2}(3, b)=3$ and $R_{2}(4, b)=b$; see Lemma 3.1(f) and (g).

R_{2}	3	4	5	6	7	8
3	3	3	3	3	3	3
4	3	4	5	6	7	8
5	3	5	7			
6	3	6				
7	3	7				
8	3	8				

In Section 5 we will add to the above table.

3 Basic Properties

The following lemma gives basic properties of k-sparseness and R_{k}. Some parts of the lemma-(b), (e), (f), and special cases of (g)—were observed by Ekim \& Gimbel [4, Remarks 2, 3, 5-7] and Cockayne \& Mynhardt [3, Prop. 1, Cor. 3(i)].

Lemma 3.1. Let k, a, and b be nonnegative integers. Then the following all hold.
(a) Let G be a graph, and let $T \subseteq V(G)$ with $|T| \leq k+1$. Then T is k-sparse in G.
(b) Let G be a graph, and let $T \subseteq V(G)$ with $|T|=k+2$. Then either T is k-sparse in G, or T is k-sparse in \bar{G}.
(c) Let G be a graph, and let $T \subseteq V(G)$. Then T is k-sparse in G iff every $(k+2)$-subset of T is k-sparse in G.
(d) $R_{k+1}(a, b) \leq R_{k}(a, b)$.
(e) $R_{k}(a, b)=R_{k}(b, a)$.
(f) If $a \leq k+1$ or $b \leq k+1$, then $R_{k}(a, b)=\min \{a, b\}$.
(g) $R_{k}(k+2, b)=b$.

Proof. (a) This is obvious.
(b) If T is not k-sparse in G, then some $x \in T$ is adjacent to $k+1$ other vertices of T, that is, to all other vertices of T. Thus, in the subgraph of \bar{G} induced by T, x has degree 0 , and every other vertex of T has degree at most k, since each such vertex is not adjacent to x. Therefore, T is k-sparse in \bar{G}.
(c) Clearly, if T is k-sparse in G, then every $(k+2)$-subset of T is k-sparse in G.

If T is not k-sparse in G, then some $x \in T$ is adjacent to at least $k+1$ other vertices of T. Let $U \subseteq T$ consist of x and $k+1$ of its neighbors. Then U is a $(k+2)$-subset of T that is not k-sparse in G.
(d) This follows from the fact that every k-sparse set is also $(k+1)$-sparse.
(e) This is obvious.
(f) This follows from part (a).
(g) If $b \leq k+1$, then the result follows from part (f). Therefore, suppose that $b \geq k+2$. Consider K_{b-1}. This graph does not contain a k-sparse set of order $k+2$. Furthermore, since its order is less than b, there can be no set of b vertices that is k-sparse in the complement. Thus, $R_{k}(k+2, b) \geq b$.

Now let G be a graph of order b containing no k-sparse set of order $k+2$. By part (b) every $(k+2)$-vertex subset of $V(G)$ is k-sparse in \bar{G}. Therefore, by part (c), $V(G)$ is a b-vertex set that is k-sparse in \bar{G}, and so $R_{k}(k+2, b) \leq b$.

The following lemma gives simple bounds for R_{k}. Part (b) generalizes a result of Burr, Erdős, Faudree, \& Shelp [1, Thm. 2], who proved it for $k=0$. Part (c) was observed by Ekim \& Gimbel [4, Remark 4].

Lemma 3.2. Let k, a, b, c be nonnegative integers. Then the following hold.
(a) If $a \geq 1$ and $b \geq k+2$, then $R_{k}(a, b) \geq R_{k}(a-1, b)+1$.
(b) If $a \geq 2 k+1$ and $b, c \geq 1$, then $R_{k}(a, b+c-1) \geq R_{k}(a, b)+R_{k}(a, c)-1$.
(c) If $a, b \geq 1$, then $R_{k}(a, b) \leq R_{k}(a-1, b)+R_{k}(a, b-1)$.

Proof. (a) If $a=1$, then the statement follows from Lemma 3.1(f).
Suppose $a \geq 2$. Let $n=R_{k}(a-1, b)-1$. Note that $n \geq 0$. Let G be a graph of order n, such that G contains no ($a-1$)-vertex k-sparse set, and \bar{G} contains no b-vertex k-sparse set.

Let G^{*} be G with an additional isolated vertex x added. Then G^{*} has order $n+1=$ $R_{k}(a-1, b)$, and G^{*} contains no a-vertex k-sparse set. If $n<k+1$, then, since $b \geq k+2$, the graph $\overline{G^{*}}$ has order less than b, and so it can contain no b-vertex k-sparse set. On the other hand, if $n \geq k+1$, then adding x to some ($b-1$)-vertex k-sparse set in \bar{G} results in a set inducing a subgraph in which x has degree greater than k. Thus $\overline{G^{*}}$ contains no b-vertex k-sparse set.

We conclude that $R_{k}(a, b)$ is greater than the order of G^{*}; the statement follows.
(b) Let G_{1} be a graph of order $R_{k}(a, b)-1$ such that G_{1} has no k-sparse a-set, and $\overline{G_{1}}$ has no k-sparse b-set. Similarly, let G_{2} be a graph of order $R_{k}(a, c)-1$ such that G_{2} has no k-sparse a-set, and $\overline{G_{2}}$ has no k-sparse c-set. Let G be the graph formed by taking the disjoint union of G_{1} and G_{2} and adding all edges between vertices in G_{1} and vertices in G_{2}.

Graph G has order $R_{k}(a, b)+R_{k}(a, c)-2$. We claim that G has no k-sparse a-set. To see this, let $S \subseteq V(G)$ with $|S|=a$. If S lies entirely in either G_{1} or G_{2}, then S is not k-sparse. Thus, since $a \geq 2 k+1$, set S must contain at least $k+1$ vertices of either G_{1} or G_{2}, and it must contain a vertex v in the other G_{i}. This vertex v thus has degree at least $k+1$ in the subgraph of G induced by S. We see that S is not k-sparse.

Further, \bar{G} has no k-sparse $(b+c-1)$-set, since any $(b+c-1)$-set in $V(G)$ must contain either b vertices of $\overline{G_{1}}$ or c vertices of $\overline{G_{2}}$, in which case it is not k-sparse in \bar{G}.

We conclude that $R_{k}(a, b+c-1)$ is greater than the order of G; the statement follows. (c) Let $n=R_{k}(a-1, b)+R_{k}(a, b-1)$, and let G be a graph of order n. Let $x \in V(G)$. Then either x has at least $R_{k}(a-1, b)$ non-neighbors or x has at least $R_{k}(a, b-1)$ neighbors. We consider the former case; the other is handled similarly.

Let T be the set of non-neighbors of x. If T has a b-vertex subset that is k-sparse in \bar{G}, then we are done. Otherwise, T must have an $(a-1)$-vertex subset U that is k-sparse in G. Then $U \cup\{x\}$ is an a-vertex set that is k-sparse in G.

It seems likely that part (b) of Lemma 3.2 holds for smaller values of a, perhaps for $a \geq k+2$.

4 Asymptotic Behavior I

In the following proposition, we use Lemma 3.2 to establish bounds on $R_{k}(k+a, k+b)$ in terms of k, a, and b.

Proposition 4.1. Let $k \geq 0$, and let $a, b \geq 2$. Then the following hold.
(a) $R_{k}(k+a, k+b) \geq k+a+b-2$.
(b) $R_{k}(k+a, k+b) \leq\binom{ a+b-4}{a-2} k+\binom{a+b-2}{a-1}$.

Proof. (a) We proceed by induction on a. In the base case, $a=2$. We need to show that $R_{k}(k+2, k+b) \geq k+b$. This follows from Lemma $3.1(\mathrm{~g})$.

If $a>2$, then we apply Lemma 3.2 (a) to obtain

$$
\begin{aligned}
R_{k}(k+a, k+b) & \geq R_{k}(k+a-1, k+b)+1 \\
& \geq(k+a+b-3)+1 \\
& =k+a+b-2
\end{aligned}
$$

(b) We proceed by induction, first on a, and then on b. If $a=2$, then the right-hand side of the inequality equals $k+b$, and we need to show that $R_{k}(k+2, k+b) \leq k+b$. This follows from Lemma 3.1(g). The inequality similarly holds when $b=2$.

Now assume that $a, b \geq 3$, and that the inequality holds for all smaller values of a and, with the given value of a, for all smaller values of b. Apply Lemma 3.2(c) to obtain

$$
\begin{aligned}
R_{k}(k+a, k+b) & \leq R_{k}(k+a-1, k+b)+R_{k}(k+a, k+b-1) \\
& \leq\left[\binom{a+b-5}{a-3} k+\binom{a+b-3}{a-2}\right]+\left[\binom{a+b-5}{a-2} k+\binom{a+b-3}{a-1}\right] \\
& =\binom{a+b-4}{a-2} k+\binom{a+b-2}{a-1} .
\end{aligned}
$$

Proposition 4.1 implies that, for fixed a, b, the value of $R_{k}(k+a, k+b)$ is $\Theta(k)$. We will prove a stronger statement: that this value is $k+O(1)$-thus showing that part (b) of Proposition 4.1 is far from best possible. We begin by finding exact formulas for $R_{k}(k+a, k+a)$ when k is sufficiently large.

Theorem 4.2. Let $k, a \geq 0$. Then the following hold.
(a) If $k \geq a-3$, then $R_{k}(k+a, k+a) \geq k+3 a-4$.
(b) If $a \geq 2$ and $k \geq 3 a-6$, then $R_{k}(k+a, k+a)=k+3 a-4$.

Proof. (a) If $a=0,1$, then the statement follows from Lemma 3.1(f). If $a=2$, then the statement follows from Lemma 3.1(g).

Suppose that $a \geq 3$ and $k \geq a-3$. Define a graph $D_{k, a}$ as follows. Let P, Q, R be disjoint sets of vertices with $|P|=|Q|=2 a-4$ and $|R|=k-(a-3)$. Let the vertex
set of $D_{k, a}$ be $P \cup Q \cup R$. Add edges: let the edges between sets P, Q form a regular bipartite graph with degree $a-2$. Let each vertex of Q be adjacent to every other vertex of Q and every vertex of R. This defines $D_{k, a}$. Note that $P \cup R$ is an independent set in $D_{k, a}$, while Q induces a complete subgraph.
$D_{k, a}$ has order $(2 a-4)+(2 a-4)+[k-(a-3)]=k+3 a-5$. Thus, to obtain a set of $k+a$ vertices of $D_{k, a}$, we would remove $2 a-5$ vertices.

Let $S \subseteq V\left(D_{k, a}\right)$ with $|S|=k+a$. The set Q contains $2 a-4$ vertices. Thus, S contains at least 1 vertex of Q. Each vertex in Q has degree $(a-2)+(2 a-5)+[k-(a-3)]=$ $k+2 a-4$. Thus, the subgraph of $D_{k, a}$ induced by S has a vertex of degree at least $(k+2 a-4)-(2 a-5)=k+1$, and so S cannot be k-sparse in $D_{k, a}$.

Similarly, the set P contains $2 a-4$ vertices. Thus, S contains at least 1 vertex of P. Each vertex in P has degree $a-2$. Thus, the subgraph of $D_{k, a}$ induced by S has a vertex of degree at most $a-2$, which has degree at least $(k+a-1)-(a-2)=k+1$ in $\overline{D_{k, a}}$. Hence, S cannot be k-sparse in $\overline{D_{k, a}}$.

We see that $D_{k, a}$ is a graph of order $k+3 a-5$ such that neither $D_{k, a}$ nor its complement has a k-sparse set of $k+a$ vertices. Statement (a) follows.
(b) Because $a \geq 2$ and $k \geq 3 a-6$, we have $k \geq a-3$, and so we can apply part (a). It remains to show that $R_{k}(k+a, k+a) \leq k+3 a-4$. Suppose for a contradiction that this is false. Then there must exist a graph G with order $k+3 a-4$, such that each $(k+a)$-vertex subset of $V(G)$ is k-sparse in neither G nor \bar{G}. That is, each $(k+a)$-vertex subset of $V(G)$ induces a subgraph of G having a vertex of degree at least $k+1$ and a vertex of degree at most $a-2=(k+a-1)-(k+1)$.

We say a vertex v is strong in G if there exists some $(k+a)$-vertex induced subgraph of G in which v has degree at least $k+1$. Thus v is strong in G iff the degree of v in G is at least $k+1$.

We say a vertex v is weak in G if there exists some $(k+a)$-vertex induced subgraph of G in which v has degree at most $a-2$. Thus v is weak in G iff the degree of v in G is at most $3 a-6=(a-2)+[(k+3 a-4)-(k+a)]$.

Note that $k+1>3 a-6$, and so no vertex can be both strong and weak in G. (Note: This is why we need $k \geq 3 a-6$.)

There must exist at least $2 a-3$ weak vertices, since, otherwise, we can remove $2 a-4$ vertices (noting that $2 a-4 \geq 0$, since $a \geq 2$), leaving a set of $k+a$ vertices, none of which is weak in G. Such a set would be k-sparse in \bar{G}.

We say a vertex v that is weak in G is special if v is adjacent to at most $a-2$ strong vertices in G. If we remove $2 a-4$ weak vertices from G, then the resulting induced subgraph has order $k+a$, and so must contain a vertex x of degree at most $a-2$. Since we only removed weak vertices, and no weak vertex is strong, the subgraph must contain every strong vertex of G, and so x is a special weak vertex. Since we can remove any collection of $2 a-4$ weak vertices of G and find a special weak vertex in what remains, G must contain at least $2 a-3$ special weak vertices.

Let $S \subseteq V(G)$ be a set of $2 a-3$ special weak vertices. Let $T \subseteq V(G)$ be the set of all strong vertices of G that are adjacent to more than $a-2$ vertices of S. Note that S, T are disjoint. Because each vertex in S is adjacent to at most $a-2$ strong vertices, we
have $|T|<|S|=2 a-3$, and so $|V(G)-T| \geq k+a$.
Let U be a set of $k+a$ vertices of G, such that $S \subseteq U \subseteq V(G)-T$. Such a set U exists, because $a-3 \leq k$, and so $|S|=2 a-3 \leq k+a=|U|$. We claim that this U is k-sparse (which would be a contradiction). To see this, consider a vertex $z \in U$. If z is not strong in G, then z has degree at most k. If z is strong in G, then, since $z \notin T, z$ is adjacent to at most $a-2$ vertices of S. There are $(k+a)-(2 a-3)-1=k-a+2$ vertices of U, other than z, that do not lie in S. Thus, in the subgraph of G induced by U, vertex z has degree at most $(a-2)+(k-a+2)=k$. We see that U is k-sparse.

By contradiction, statement (b) is proven.
Using Theorem 4.2, we can show that, for fixed a, b, the value of $R_{k}(k+a, k+b)$ is $k+O(1)$.

Corollary 4.3. For each pair of integers a, b, there exist constants $\ell_{a, b}$ and $u_{a, b}$ so that

$$
\ell_{a, b} \leq R_{k}(k+a, k+b)-k \leq u_{a, b}
$$

for all $k \geq 0$ for which $R_{k}(k+a, k+b)$ is defined.
Proof. Fix integers a, b. Without loss of generality, say $a \geq b$. If $b<2$, then the result follows from Lemma 3.1(f), with $\ell_{a, b}=u_{a, b}=b$.

Suppose that $b \geq 2$; then $a \geq 2$ as well. Let $\ell_{a, b}, u_{a, b}$ be defined as follows.

$$
\begin{aligned}
\ell_{a, b} & =a+b-2 \\
u_{a, b} & =\max _{0 \leq k \leq 3 a-6}\left[R_{k}(k+a, k+a)-k\right] .
\end{aligned}
$$

The lower bound now follows from Proposition 4.1(a). We consider the upper bound. Note that $u_{a, b}$ is well defined, since we take the maximum value of a nonempty finite set.

By Lemma 3.2(a), since $a \geq b$, we have $R_{k}(k+a, k+b) \leq R_{k}(k+a, k+a)$. It thus suffices to show that $R_{k}(k+a, k+a)-k \leq u_{a, b}$. When $k \leq 3 a-6$ this follows from the definition of $u_{a, b}$. If $k>3 a-6$, then we have

$$
\begin{aligned}
R_{k}(k+a, k+a)-k & =3 a-4 & & \text { by Theorem } 4.2(\mathrm{~b}) \\
& =R_{3 a-6}([3 a-6]+a,[3 a-6]+a)-[3 a-6] & & \text { by Theorem } 4.2(\mathrm{~b}) \\
& \leq u_{a, b} . \quad \square & &
\end{aligned}
$$

It appears that, for fixed $a, b \geq 0$, the value $R_{k}(k+a, k+b)-k$ is maximized when $k=0$, and thus that we can set $u_{a, b}=R(a, b)$ in Corollary 4.3.

Conjecture 4.4. If $k, a, b \geq 0$, then $R_{k}(k+a, k+b)-k \leq R(a, b)$.
Conjecture 4.4 would follow from the following stronger conjecture.
Conjecture 4.5. For fixed integers a, b, the sequence of values of $R_{k}(k+a, k+b)-k$ is nonincreasing.

We will discuss asymptotic behavior again later, in Section 6, after we determine a number of previously unknown values of R_{k}.

5 Specific Values

Using Theorem 4.2, we can establish, for each k, the first nontrivial value of R_{k}. That is, we find the first value that is not given by Lemma 3.1.

Corollary 5.1. Let $k \geq 0$. Then,

$$
R_{k}(k+3, k+3)= \begin{cases}6, & \text { if } k=0 \\ k+5, & \text { otherwise } .\end{cases}
$$

Proof. When $k=0$ we use the well known result that $R(3,3)=6$ (noted by Greenwood \& Gleason [8, p. 3]). The case $k=1$ was proven by Cockayne \& Mynhardt [3, Cor. 3(ii)]. The case $k=2$ was proven by Ekim \& Gimbel [4, Thm. 3].

When $k \geq 3$, we set $a=3$, note that $k \geq 3 a-6$, and apply Theorem 4.2(b).
Now we determine a number of previously unknown individual values of $R_{k}(a, b)$. We will give the full proof for one value: $R_{2}(5,6)=8$. For the others, we give proofs for the lower bounds; the upper bounds were verified using a computer.

Theorem 5.2. $R_{2}(5,6)=8$.
Proof. For convenience, we will actually prove that $R_{2}(6,5)=8$. The lower bound follows from Lemma 3.2 (a) and the fact that $R_{2}(5,5)=7$ (proven by Ekim \& Gimbel [4, Thm. 3]).

For the upper bound, suppose for a contradiction that there exists a graph G of order 8 , such that there is no 2 -sparse set of order 6 in G, and there is no 2 -sparse set of order 5 in \bar{G}. We note that G can contain neither a 5 -cycle nor $K_{2,3}$ as a subgraph (not necessarily induced), for otherwise \bar{G} would contain a 2 -sparse set of order 5 .

Maximum Degree at Most 3-We claim that G has maximum degree at most 3 .
Suppose for a contradiction that G has a vertex v of degree at least 4. Let $S \subseteq V(G)$ be a set of 4 vertices that belong to the open neighborhood of v. Let $T=V(G)-[S \cup\{v\}]$; note that $|T|=3$. The S-degree of a vertex that does not lie in S, is defined to be the cardinality of the intersection of its open neighborhood with S. Say $T=\{x, y, z\}$, with the S-degree of x being at least that of y, which, in turn, is at least that of z.

As G does not contain a 5 -cycle, we see that $G[S]$ cannot contain a path on four vertices. As G does not contain $K_{2,3}$, we see that S is 2 -sparse. Thus, $G[S]$ is isomorphic to a subgraph of either $K_{3} \cup K_{1}$ or $K_{2} \cup K_{2}$.
S-Degree at Most 1. We wish to show that, for S, T defined above, each vertex in T has S-degree at most 1 . If x has S degree 3 or more, then G contains a $K_{2,3}$. We may thus assume that every vertex in T has S-degree at most 2 .

Suppose that x has S-degree exactly 2 . Then the 2 neighbors of x in S might be adjacent, but cannot be adjacent to other vertices of S, for otherwise G would contain a 5 -cycle. In particular, S must be 1 -sparse in G.

Suppose that y also has S-degree exactly 2 . Then, as G contains no 5 -cycle, x and y must be nonadjacent. As G does not contain a $K_{2,3}$, we see that x and y cannot have
exactly the same neighborhood in S. If x and y have a common neighbor in S, then S is an independent set, and $S \cup\{x, y\}$ forms a 2 -sparse set of order six. On the other hand, if x and y each have S-degree 2, but share no common neighbor, then $S \cup\{x, y\}$ induces a subgraph of two disjoint triangles, and hence is 2 -sparse. We see that y has S-degree at most 1 .

If y and z have a common neighbor $w \in S$, then neither y nor z can be adjacent to x, since G contains no 5 -cycle, and so $(S \cup T)-\{w\}$ is a 2 -sparse 6 -set. On the other hand, if there is no such w, then $S \cup\{y, z\}$ is a 2 -sparse 6 -set.

Thus, we have shown that each vertex of T has S-degree at most 1 .
Finishing the Maximum Degree 3 Proof. We now complete the verification of our claim that G has maximum degree at most 3. Recall that $G[S]$ is isomorphic to a subgraph of either $K_{3} \cup K_{1}$ or $K_{2} \cup K_{2}$.

We wish to show, first, that there is at most 1 vertices in $G[S \cup T]$ with degree at least 4, and, second, that if 2 vertices in $G[s \cup T]$ have degree at least 3, then they are adjacent.

For the first part, note that S, T are each 2 -sparse. Thus, any vertex lying in one of these sets and having degree at least 4 in $G[S \cup T]$, must be adjacent to at least 2 vertices in the other set. Since there are at most 3 edges between S, T, there can be only 1 such vertex.

For the second part, let a, b be vertices of degree at least 3 in $G[S \cup T]$. Suppose that $a \in T$. If $b \in T$, then $G[T]$ is K_{3}, and so a, b are adjacent. On the other hand, if $b \in S$, then a must be adjacent to both other vertices of T. Since G contains no 5 -cycle, there can be only one vertex in S that is adjacent to a vertex of T. This vertex must thus be b, and so a, b are adjacent.

Now suppose that $a, b \in S$. Then one of the two has degree at least 2 in $G[S]$, while the other has degree at least 1 . Considering the possible isomorphism classes of $G[S]$, we see that a, b must be adjacent.

The first and second parts, above, having been verified, we conclude that removing a vertex of maximum degree from $G[S \cup T]$ leaves a 2 -sparse set of 6 vertices.

Thus, our claim holds: G has maximum degree at most 3 .
Triangle Free-We claim that G is triangle-tree.
Suppose for a contradiction that G contains a triangle. Let N be the set of vertices that do not lie in the triangle, and have at least one neighbor in the triangle. Because G has maximum degree at most 3, each vertex in the triangle has at most 1 neighbor in N, and so $|N| \leq 3$. If $|N| \leq 2$, then the vertices of the triangle together with 3 other vertices that do not lie in N, form a 2 -sparse 6 -set. Thus $|N|=3$, and so there is a matching between the triangle and N.

Let u, v be the 2 vertices of G in neither the triangle nor in N. As G contains no 5 -cycle, neither u nor v can have more than 1 neighbor in N, and $G[N]$ can have no edges. If u and v have a common neighbor, say w, then the removal of the neighbor of w in the triangle leaves a 2 -sparse set. On the other hand, if u and v do not share a common neighbor, then the removal of any vertex in the triangle leaves a 2 -sparse set.

Thus, our claim holds: G is triangle-free.

Handling a Bipartite Graph-Suppose that G is not bipartite. Then G contains an induced odd cycle. As this cycle can be neither a triangle nor a 5 -cycle, it must be an induced 7 -cycle, which is 2 -sparse. We may thus assume that G is bipartite.

Let A, B be the partite sets of G, where $|A| \leq|B|$. As B is 2 -sparse, we must have $|B| \leq 5$. Accordingly, $|B| \in\{4,5\}$.

We first consider the case $|B|=4$.
Suppose that both A and B contain a vertex of degree 3. If these 2 vertices are nonadjacent, then the removal of both vertices leaves a 2 -sparse 6 -set. Thus, each vertex of degree 3 in A must be adjacent to each vertex of degree 3 in B. The removal of one such vertex from A and one from B leaves a 2 -sparse 6 -set. We may thus assume, without loss of generality, that A contains no vertices of degree 3 .

The set B cannot contain 3 vertices of degree 3 , since these would necessarily have a common neighbor, which would be a vertex of degree 3 in A. Hence, we may remove 2 vertices of B to obtain a 2 -sparse 6 -set.

In our final case, we have $|B|=5$, and hence $|A|=3$.
If B contains at least 2 vertices of degree 3 , then G contains a $K_{2,3}$. If B contains exactly 1 vertex of degree 3 , then the removal of this vertex leaves a 2 -sparse set. Thus, B contains no vertices of degree 3 . If at most 2 vertices of A have degree 3 , then we remove them and produce a 2 -sparse set. We may thus assume that all vertices of A have degree 3. Hence some vertex of B must have degree 2. Remove this vertex and its nonneighbor in A; what remains is a 2 -sparse set of 6 vertices.

This exhausts all cases. Thus, no such G exists; our desired conclusion follows.
Using a computer program, we have determined other values of R_{k}. Our software is written in the Python programming language; it is available via the Worldwide Web [2].

We have also been able to enumerate the number of extremal graphs for these values of R_{k}. A graph G is extremal for $R_{k}(a, b)$ if G has order $R_{k}(a, b)-1, G$ contains no k-sparse set of a vertices, and \bar{G} contains no k-sparse set of b vertices. Informally, G is extremal if its existence shows that $R_{k}(a, b)$ is at least its actual value.

Proposition 5.3. The following all hold.
(a) $R_{2}(5,7)=10$, with exactly 16 extremal graphs.
(b) $R_{2}(5,8)=12$, with exactly 8 extremal graphs.
(c) $R_{2}(6,6)=12$, with exactly 2 extremal graphs.
(d) $R_{3}(6,7)=9$, with exactly 28 extremal graphs.
(e) $R_{3}(6,8)=10$, with exactly 159 extremal graphs.
(f) $R_{3}(6,9)=12$, with exactly 4 extremal graphs.
(g) $R_{3}(7,7)=11$, with exactly 4 extremal graphs.
(h) $R_{3}(7,8)=13$, with exactly 43 extremal graphs.
(i) $R_{4}(7,8)=10$, with exactly 84 extremal graphs.
(j) $R_{4}(7,9)=11$, with exactly 550 extremal graphs.
(k) $R_{4}(7,10)=13$, with exactly 4 extremal graphs.
(l) $R_{4}(8,8)=12$, with exactly 8 extremal graphs.
(m) $R_{5}(8,9)=11$, with exactly 316 extremal graphs.
(n) $R_{5}(8,10)=12$, with exactly 2430 extremal graphs.
(o) $R_{5}(9,9)=13$, with exactly 22 extremal graphs.
(p) $R_{6}(9,10)=12$, with exactly 1712 extremal graphs.

The upper bounds were all verified using a computer program [2]. We give proofs for the lower bounds.

Proof of Lower Bounds. (a) For the lower bound, we can use the following 9-vertex graph G, which is extremal for $R_{2}(7,5)$. Begin with a 6 -cycle. Let S be an independent set of 3 vertices in this cycle. For each $v \in S$, add a new vertex v^{\prime} having the same neighbors as v. Let G be the resulting graph.

Then G has no 7 -vertex 2 -sparse set and \bar{G} has no 5 -vertex 2 -sparse set, showing that $R_{2}(7,5)>9$.
(b) For the lower bound, we can use the following 11-vertex graph G, which is extremal for $R_{2}(8,5)$. The vertex set of G is $\{1,2,3, a, b, c, d, w, x, y, z\}$, with edges as follows. Vertices a, b, c, d induce a K_{4}. Vertices w, x, y, z induce a K_{4}. Vertex 1 is adjacent to a and w. Vertex 2 is adjacent to b and x. Vertex 3 is adjacent to c and y.

Then G has no 8 -vertex 2 -sparse set and \bar{G} has no 5 -vertex 2 -sparse set, showing that $R_{2}(8,5)>11$.
(c) For the lower bound, we can use the following 11-vertex graph G, which is extremal for $R_{2}(6,6)$. The vertex set of G is $\{1,2,3,4, a, b, c, d, t, x, y\}$, with edges as follows. Vertices $1, a, 2, b, 3, c, 4, d$ form an 8 -cycle, in that order. The set $\{a, b, c, d, t\}$ induces a K_{5}. Each vertex of $\{1,2,3,4\}$ is adjacent to each vertex of $\{x, y\}$, and t is adjacent to y.

Then G has no 6 -vertex 2 -sparse set and \bar{G} has no 6 -vertex 2 -sparse set, showing that $R_{2}(6,6)>11$.
(d) The lower bound follows from Lemma 3.2 (a) and the fact that $R_{3}(6,6)=8$, by Theorem 4.2(b).
(e) The lower bound follows from Lemma 3.2 (a) and the fact that $R_{3}(6,7)=9$, from part (d).
(f) For the lower bound, we can use the following 11-vertex graph G, which is extremal for $R_{3}(9,6)$. The vertex set of G is $\{1,2,3,4,5,6, a, b, c, x, y\}$, with edges as follows. Vertices
a, b, c, x, y induce a K_{5}. Vertices 1,2 are each adjacent to a. Vertices 3,4 are each adjacent to b. Vertices 5, 6 are each adjacent to c.

Then G has no 9 -vertex 3 -sparse set and \bar{G} has no 6 -vertex 3 -sparse set, showing that $R_{3}(9,6)>11$.
(g) The lower bound follows from Theorem 4.2(a).
(h) For the lower bound, we can use the following 12 -vertex graph G, which is extremal for $R_{3}(8,7)$. The vertex set of G is $\{1,2,3,4,5, a, b, c, d, e, f, x\}$, with edges as follows. Vertices a, b, c, d, e, f induce a K_{6}. Vertices 1,2 are each adjacent to a and b. Vertices 3, 4 are each adjacent to c and d. Vertex 5 is adjacent to e and f. Vertex x is adjacent to $1,2,3,4,5$, and 6 .

Then G has no 8 -vertex 3 -sparse set and \bar{G} has no 7 -vertex 3 -sparse set, showing that $R_{3}(8,7)>12$.
(i) The lower bound follows from Lemma 3.2 (a) and the fact that $R_{4}(7,7)=9$, by Theorem 4.2(b).
(j) The lower bound follows from Lemma 3.2 (a) and the fact that $R_{4}(7,8)=10$, from part (i).
(k) For the lower bound, we can use the following 12 -vertex graph G, which is extremal for $R_{4}(10,7)$. The vertex set of G is $\{1,2,3,4,5,6, a, b, c, x, y, z\}$, with edges as follows. Vertices a, b, c, x, y, z induce a K_{6}. Vertices 1,2 are each adjacent to a. Vertices 3, 4 are each adjacent to b. Vertices 5,6 are each adjacent to c.

Then G has no 10 -vertex 4 -sparse set and \bar{G} has no 7 -vertex 4 -sparse set, showing that $R_{4}(10,7)>12$.
(l) The lower bound follows from Theorem 4.2(a).
(m) The lower bound follows from Lemma 3.2 (a) and the fact that $R_{5}(8,8)=10$, by Theorem 4.2(b).
(n) The lower bound follows from Lemma 3.2(a) and the fact that $R_{5}(8,9)=11$, from part (m).
(o) The lower bound follows from Theorem 4.2(a).
(p) The lower bound follows from Lemma 3.2 (a) and the fact that $R_{6}(9,9)=11$, by Theorem 4.2(b).

Remark 5.4. Using our computer program [2], we determined that there are exactly 13 extremal graphs for $R_{2}(5,6)$.

We can now update our tables of values of R_{k}. Note that we have computed no new values of R_{0} or R_{1}.

The following table shows the values of $R_{2}(a, b)$ that we have found, for $3 \leq a, b \leq 10$. These are from Lemma 3.1(f) and (g), Ekim \& Gimbel [4, Thm. 3] (for $R_{2}(5,5)=7$), Theorem 5.2, and Proposition 5.3. Newly established values are shown in boldface.

R_{2}	3	4	5	6	7	8	9	10
3	3	3	3	3	3	3	3	3
4	3	4	5	6	7	8	9	10
5	3	5	7	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$		
6	3	6	$\mathbf{8}$	$\mathbf{1 2}$				
7	3	7	$\mathbf{1 0}$					
8	3	8	$\mathbf{1 2}$					
9	3	9						
10	3	10						

The following table shows the values of $R_{3}(a, b)$ that we have found, for $4 \leq a, b \leq 11$. These are from Lemma 3.1 (f) and (g), Theorem4.2(b), and Proposition5.3. Again, newly established values are shown in boldface.

R_{3}	4	5	6	7	8	9	10	11
4	4	4	4	4	4	4	4	4
5	4	5	6	7	8	9	10	11
6	4	6	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 2}$		
7	4	7	$\mathbf{9}$	$\mathbf{1 1}$	$\mathbf{1 3}$			
8	4	8	$\mathbf{1 0}$	$\mathbf{1 3}$				
9	4	9	$\mathbf{1 2}$					
10	4	10						
11	4	11						

The following table shows the values of $R_{4}(a, b)$ that we have found, for $5 \leq a, b \leq 12$. These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3.

R_{4}	5	6	7	8	9	10	11	12
5	5	5	5	5	5	5	5	5
6	5	6	7	8	9	10	11	12
7	5	7	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 3}$		
8	5	8	$\mathbf{1 0}$	$\mathbf{1 2}$				
9	5	9	$\mathbf{1 1}$					
10	5	10	$\mathbf{1 3}$					
11	5	11						
12	5	12						

The following table shows the values of $R_{5}(a, b)$ that we have found, for $6 \leq a, b \leq 13$. These are from Lemma $3.1(\mathrm{f})$ and (g), Theorem 4.2(b), and Proposition 5.3.

R_{5}	6	7	8	9	10	11	12	13
6	6	6	6	6	6	6	6	6
7	6	7	8	9	10	11	12	13
8	6	8	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$			
9	6	9	$\mathbf{1 1}$	$\mathbf{1 3}$				
10	6	10	$\mathbf{1 2}$					
11	6	11						
12	6	12						
13	6	13						

The following table shows the values of $R_{6}(a, b)$ that we have found, for $7 \leq a, b \leq 14$. These are from Lemma 3.1(f) and (g), Theorem 4.2(b), and Proposition 5.3.

R_{6}	7	8	9	10	11	12	13	14
7	7	7	7	7	7	7	7	7
8	7	8	9	10	11	12	13	14
9	7	9	$\mathbf{1 1}$	$\mathbf{1 2}$				
10	7	10	$\mathbf{1 2}$	$\mathbf{1 4}$				
11	7	11						
12	7	12						
13	7	13						
14	7	14						

The following table shows the values of $R_{7}(a, b)$ that we have found, for $8 \leq a, b \leq 15$. These are from Lemma 3.1(f) and (g), and Theorem 4.2(b).

R_{7}	8	9	10	11	12	13	14	15
8	8	8	8	8	8	8	8	8
9	8	9	10	11	12	13	14	15
10	8	10	$\mathbf{1 2}$					
11	8	11		$\mathbf{1 5}$				
12	8	12						
13	8	13						
14	8	14						
15	8	15						

Remark 5.5. We have determined $R_{k}(a, b)$ for all k, a, b for which $R_{k}(a, b) \leq 12$. These are the values corresponding to entries in the above tables that are at most 12, along with other values that can easily be computed using Lemma 3.1(f) and (g).

6 Asymptotic Behavior II

Once again, we are interested in the behavior of $R_{k}(k+a, k+b)$ when a, b are fixed and k increases. We know the following, from Corollary 5.1.

$R_{k}(k+3, k+3)$	value
$R_{0}(3,3)$	6
$R_{1}(4,4)$	6
$R_{2}(5,5)$	7
$R_{3}(6,6)$	8
$R_{4}(7,7)$	9
$R_{5}(8,8)$	10

The values below are from Greenwood \& Gleason [8, p. 4] (for $R_{0}(4,4)=18$), Cockayne \& Mynhardt [3, Cor. 3(iii)] (for $R_{1}(5,5)=15$), Proposition 5.3, and Theorem 4.2.

$R_{k}(k+4, k+4)$	value
$R_{0}(4,4)$	18
$R_{1}(5,5)$	15
$R_{2}(6,6)$	12
$R_{3}(7,7)$	11
$R_{4}(8,8)$	12
$R_{5}(9,9)$	13
$R_{6}(10,10)$	14
$R_{7}(11,11)$	15
$R_{8}(12,12)$	16
$R_{9}(13,13)$	17

More generally, we have the following.
Proposition 6.1. For all $k \geq 0$, we have the following.
(a) $R_{k}(k+3, k+3)=\max \{6,5+k\}$.
(b) $R_{k}(k+4, k+4)=\max \{18-3 k, 8+k\}$.

In both cases above, the Ramsey number is the maximum of two polynomials of degree at most 1 in k. Based on this, we indulge in wild speculation: does this continue to be true for other $R_{k}(k+a, k+a)$? For other $R_{k}(k+a, k+b)$?

It appears that, for fixed a, there is a unique k_{a} such that the values $R_{k}(k+a, k+a)$ are nonincreasing for $k \leq k_{a}$, and increasing for $k \geq k_{a}$. For example, we have $k_{3}=1$ and $k_{4}=3$. We ask about the behavior of this k_{a}.

Question 6.2. Does this value k_{a} exist for each a ? If so, what is the behavior of k_{a} as a grows?

We have discussed the behavior of $R_{k}(k+a, k+b)$ when a, b are fixed and k grows large. What about when k is fixed and a, b increase? We establish bounds for the diagonal values $R_{k}(a, a)$. We will make use of the following theorem due to Erdős \& Gimbel [6, Thm. 3]. (Note that a statement almost surely holds, if the probability of it holding converges to 1 -in this case, as $n \rightarrow \infty$.)

Theorem 6.3 (Erdős \& Gimbel 1991 [6, Thm. 3]). Given a fixed graph H and a random graph G of order n, the largest H-free subgraph of G almost surely has cardinality less than $c \ln n$ where c is dependent only on H.

The following theorem generalizes a result of Erdős [5, Thm. 1], who proved it for $k=0$ (with $t=\sqrt{2}$ for $a \geq 3$). (Erdős attributes the special case of part (b) when $k=0$ to G. Szekeres, citing a paper of Erdős \& Szekeres [7].)

Theorem 6.4. Let k be a nonnegative integer.
(a) There exists a constant $t=t(k)>1$ such that, if $a \geq 2$, then $R_{k}(a, a)>t^{a}$.
(b) If $a \geq k+2$, then $R_{k}(a, a)<4^{a-k-2}(k+4)$.

Proof. (a) Let H be the graph formed by the disjoint union of $K_{1, k+1}$ and K_{1}. Let c be that given by Theorem 6.3 for this H. Let $n=\left\lfloor e^{a / c}\right\rfloor$. By Theorem 6.3, if n is sufficiently large, then there exists a graph G of order n such that every subset of $V(G)$ with cardinality at least $c \ln n$ induces a subgraph of G containing a copy of H; thus, every subset of cardinality at least a induces such a subgraph. By definition of H, this subgraph is k-sparse in neither G nor \bar{G}, and so $R_{k}(a, a)>n$. Thus, $R_{k}(a, a)>\left(e^{1 / c}\right)^{a}$, when $n=\left\lfloor e^{a / c}\right\rfloor$ is sufficiently large.

We have verified the statement for sufficiently large a, since, if a is large, then n is large. We can verify the statement for all $a \geq 2$ using reasoning similar to that in the proof of the upper bound in Corollary 4.3. Let a_{0} be the least "sufficiently large" value of a, or 2 if this value is less than 2 . Let t_{0} be defined as follows.

$$
t_{0}=\min _{2 \leq a \leq a_{0}}\left[\left(R_{k}(a, a)-\frac{1}{2}\right)^{1 / a}\right]
$$

Note that this is well defined, since, first, for $a \geq 2$ we have $R_{k}(a, a) \geq 2$, and so the number being raised to a power is greater than 1 , while the exponent is positive, and, second, t_{0} is the minimum value of a nonempty finite set.

Lastly, we set $t=\min \left\{t_{0}, e^{1 / c}\right\}$. We can see that, for this t, we have $R_{k}(a, a)>t^{a}$ for all $a \geq 2$.
(b) We can apply Proposition 4.1(b) to show that

$$
R_{k}(a, a) \leq\binom{ 2 a-2 k-4}{a-k-2} k+\binom{2 a-2 k-2}{a-k-1}
$$

The desired statement then follows from the fact that $\binom{2 s}{s}<4^{s}$ when $s \geq 1$ (this bound can be proven using a simple inductive argument).

We see that, for fixed k, the values of $R_{k}(a, a)$ grow exponentially (and thus the values of $R_{k}(k+a, k+a)$ do as well $)$.

Corollary 6.5. For fixed k, the value of $\log R_{k}(a, a)$ is $\Theta(a)$.

References

[1] S. A. Burr, P. Erdős, R. J. Faudree, and R. H. Schelp, On the difference between consecutive Ramsey numbers, Utilitas Math. 35 (1989), 115-118.
[2] G. G. Chappell, ramseyk [computer program], March 4, 2011, available at http://www.cs.uaf.edu/~chappell/papers/defram.
[3] E. J. Cockayne and C. M. Mynhardt, On 1-dependent Ramsey numbers for graphs, Discuss. Math. Graph Theory 19 (1999), no. 1, 93-110.
[4] T. Ekim and J. Gimbel, Some defective parameters in graphs, manuscript, 2010.
[5] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
[6] P. Erdős and J. Gimbel, A note on the largest H-free subgraph in a random graph, Graph theory, combinatorics, and applications, v. 1 (Kalamazoo, MI, 1988), 435-437, Wiley-Intersci. Publ., Wiley, New York, 1991.
[7] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compositio Math. 2 (1935), 463-470.
[8] R. E. Greenwood and A. M. Gleason, Combinatorial relations and chromatic graphs, Canad. J. Math. 7 (1955), 1-7.
[9] H. Harborth and I. Mengersen, All Ramsey numbers for five vertices and seven or eight edges, Discrete Math. 73 (1989), no. 1-2, 91-98.
[10] G. R. T. Hendry, Ramsey numbers for graphs with five vertices, J. Graph Theory 13 (1989), 245-248.
[11] S. Radziszowski, Small Ramsey numbers, Electron. J. Combin. (2009), Dynamic Survey 1, revision \#12: August 4, 2009, 72 pp. (electronic).

