
Where Are We?
PL Category: Concatenative PLs
Introduction to Forth

CS F331 Programming Languages
CSCE A331 Programming Language Concepts
Lecture Slides
Monday, March 23, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017–2020 Glenn G. Chappell



Review

2020-03-23 CS F331 / CSCE A331 Spring 2020 2



Review
Haskell: Data

We made a Binary Tree type, with a data item in each node.
Such a Binary Tree either has no nodes (it is empty) or it has a 

root node, which contains a data item and has left and right 
subtrees, each of which is a Binary Tree.

The type is called the type BT. It has two constructors.
§ BTEmpty gives an empty Binary Tree.
§ BTNode, followed by an item of the value type, the left subtree, and 

the right subtree, constructs a nonempty tree.

data BT vt = BTEmpty | BTNode vt (BT vt) (BT vt)

We implemented the Treesort algorithm in Haskell, using BT for the 
Binary Search Tree.

2020-03-23 CS F331 / CSCE A331 Spring 2020

The value type

See data.hs.

3



Review
PL Feature: Values & Variables [1/3]

Remember:
§ A value has a lifetime: time from construction to destruction.
§ An identifier has a scope: where in code it is accessible.

Because a bound variable involves both an identifier and a value, 
scope and lifetime are both applicable.

2020-03-23 CS F331 / CSCE A331 Spring 2020 4



Review
PL Feature: Values & Variables [2/3]

At runtime, a variable is typically implemented as a location in 
memory large enough to hold the internal representation of the 
variable’s value.

When a variable’s value is set, the value is computed and its 
representation is stored in the memory location.

// C++
int n = f(1) + g(2);

But what if we are evaluation is lazy?

2020-03-23 CS F331 / CSCE A331 Spring 2020

37
nMemory

Functions f & g are called. Their return values are 
added. Say the result is 37.

This is stored in the memory location for variable n.

5



Review
PL Feature: Values & Variables [3/3]

-- Haskell
n = (f 1) + (g 2)

The usual way to implement a variable when lazy evaluation is 
done, is to have an unevaluated variable hold a thunk: a 
reference to code whose execution computes a value.

2020-03-23 CS F331 / CSCE A331 Spring 2020

Thunk

nMemory

37
nMemory

Value of n is needed 
for the first time.

6



Where Are We?

2020-03-23 CS F331 / CSCE A331 Spring 2020 7



2020-03-23 CS F331 / CSCE A331 Spring 2020

Where Are We?
From the First Day of Class: Course Overview — Description

In this class, we study programming languages with a view toward 
the following.
§ How programming languages are specified, and how these 

specifications are used.
§ What different kinds of programming languages are like.
§ How certain features differ between various programming 

languages.

8



2020-03-23 CS F331 / CSCE A331 Spring 2020

Where Are We?
From the First Day of Class: Course Overview — Goals

After taking this class, you should:
§ Understand the concepts of syntax and semantics, and how

syntax can be specified.
§ Understand, and have experience implementing, basic lexical 

analysis, parsing, and interpretation.
§ Understand the various kinds of programming languages and

the primary ways in which they differ.
§ Understand standard programming language features and

the forms these take in different programming languages.
§ Be familiar with the impact (local, global, etc.) that choice of 

programming language has on programmers and users.
§ Have a basic programming proficiency in multiple

significantly different programming languages.

9



2020-03-23 CS F331 / CSCE A331 Spring 2020

Where Are We?
From the First Day of Class: Course Overview — Topics

The following topics will be covered:
§ Formal Languages & Grammars.
§ PL Feature. Execution I: compilers, interpreters.
§ PL #1. Lua.
§ Lexing & Parsing.
§ PL Feature. Type Systems.
§ PL #2. Haskell.
§ PL Feature. Values & variables.
§ PL #3. Forth.
§ Semantics & Interpretation.
§ PL Feature. Reflection.
§ PL #4. Scheme.
§ PL Feature. Execution II: execution models, flow of control.
§ PL #5. Prolog.

We are 
here.

Red: Track 1 — Syntax & semantics 
of programming languages 

Blue: Track 2 — Programming-
language features & categories, and 
specific programming languages

We lost a week of classes, 
so we will not have time 
to cover these.

10



PL Category: Concatenative PLs

2020-03-23 CS F331 / CSCE A331 Spring 2020 11



PL Category: Concatenative PLs
Background [1/4]

A concatenative programming language is one in which the 
concatenation of two programs is a valid program, with the data 
returned by the first part being passed to the second part.

The first major concatenative PL was Forth, developed by Charles 
H. Moore in the 1960s.

2020-03-23 CS F331 / CSCE A331 Spring 2020 12



PL Category: Concatenative PLs
Background [2/4]

Here is a diagram of a program prog1 with arrows representing the 
data it takes and returns.

Another program prog2:

Put the two together to make a new program:

From a more theoretical point of view, we say that concatenative 
PLs build up programs using composition of functions.

2020-03-23 CS F331 / CSCE A331 Spring 2020

prog1

prog2

prog2prog1

13



PL Category: Concatenative PLs
Background [3/4]

As a more practical example, here is a Forth program.
§ Takes: nothing, returns: the integer 5.

5

Here is another Forth program.
§ Takes: an integer, returns: nothing, side effect: prints the integer.

.

Put the two programs together to get a third Forth program.
§ Takes: nothing, returns: nothing, side effect: prints “5”.

5 .

2020-03-23 CS F331 / CSCE A331 Spring 2020 14



PL Category: Concatenative PLs
Background [4/4]

Concatenative programming languages have not formed a very 
fruitful branch of the PL family tree. However, there are some in 
common use.

The concatenative PL that is most heavily used today is probably 
PostScript, from Adobe Systems. While considered mostly as a 
way of specifying documents to be printed, PostScript is actually 
a full-featured programming language.

A concatenative PL that I think deserves more attention is Factor. 
This is a dynamic PL that grew out of a scripting language for 
games, beginning in 2003.

2020-03-23 CS F331 / CSCE A331 Spring 2020 15



PL Category: Concatenative PLs
Typical Characteristics

A typical concatenative programming language has the following 
characteristics.
§ It is stack-based: stacks are the primary means of passing around 

data. Values passed to a program—including function parameters—
are placed on a stack. Return values are left on the same stack.

§ It has a very simple syntax. Usually a program consists of a 
sequence of words, separated by whitespace.

§ It blurs or eliminates the distinctions between statements, blocks, 
and programs.
§ See the Forth code a couple of slides back.

§ It is extensible: little or no distinction is made between built-in 
constructs and those put together by a programmer using the PL.
§ Compare C++ or Lua.

§ It is not statically typed. It may be dynamically typed, or it may 
have no type checking.
§ I speak of a typical concatenative PL. There are statically typed 

concatenative PLs.

2020-03-23 CS F331 / CSCE A331 Spring 2020 16



Introduction to Forth
History [1/2]

The next programming language we will look at is Forth. (The 
name apparently began as an abbreviation of “Fourth”, due to a 
file system with a five-character limit on filenames.) Forth was 
invented in the 1960s by Charles H. Moore, for his own use. The 
PL first saw significant use at the U.S. National Radio Astronomy 
Observatory.

A Forth interpreter can be very small. So Forth is easy to port—or 
to implement from scratch. As a result, essentially every 
computer platform produced since 1970 has had a Forth 
implementation available. But through much of the history of 
Forth, no two of these implementations were compatible.

For many platforms, a Forth interpreter was the first nontrivial 
program ever executed on the platform.

2020-03-23 CS F331 / CSCE A331 Spring 2020 17



Introduction to Forth
History [2/2]

Forth became popular in the late 1970s and early 1980s, but its 
popularity has waned considerably since then. It remains a 
strong influence on some other PLs.

Forth was first standardized in 1983. In 1994, a Forth standard 
was issued by ANSI. Reportedly, a revised standard is in the 
works. A free implementation of the 1994 standard is available 
for most/all modern platforms from the GNU project: Gforth.

An endless number of dialects of Forth exist. We will follow the 
1994 ANSI standard; from now on, “Forth” means ANSI 
standard Forth, as implemented in Gforth.

2020-03-23 CS F331 / CSCE A331 Spring 2020 18



Introduction to Forth
Characteristics — General

Forth is a concatenative programming language.
§ Again, this means that the concatenation of two Forth programs is a 

valid Forth program, with the data returned by first part being 
passed to the second part.

Like most concatenative PLs, Forth is stack-based: values are 
passed and returned via a stack.

Like Java, C++, and Lua—and unlike Haskell—Forth is aimed at 
imperative programming: programs consist largely of 
instructions that tell a computer what to do.

2020-03-23 CS F331 / CSCE A331 Spring 2020 19



Introduction to Forth
Characteristics — Words

Forth has an extremely simple syntax. Programs consist of 
sequences of words: strings of non-space characters, separated 
by whitespace. For the purposes of separating words, blanks 
and newlines are considered identical.
§ Forth does have single-line comments, which end at newline.
§ There is special syntax for string literals, which may contain blanks.

Forth words are case-insensitive: “ab;c1”, “AB;C1”, and “Ab;c1” 
name the same word.
§ In contrast, Java, C++, Lua, and Haskell are all case-sensitive.

“ab” and “aB” are considered distinct identifiers in all of these PLs.

Forth syntax generally does not distinguish between numeric 
literals, variables, functions, and flow-of-control constructs. 
There are only words.

2020-03-23 CS F331 / CSCE A331 Spring 2020 20



Introduction to Forth
Characteristics — Extensibility

Forth is an extensible programming language. New functionality 
has equal status with previously defined functionality.

In particular, Forth allows programmers to:
§ Create new flow-of-control constructs.
§ Create new words for defining words.
§ Redefine standard Forth words.

This extensibility has already been used to create the basic set of 
words available when Forth starts up. Many of the words we 
commonly use are not actually core Forth words; rather, they 
are written in Forth.

Extensibility is accomplished via an internal Forth data structure: 
the dictionary. This lists all defined words, in the order they 
were defined. Programmer-defined words simply come later in 
the dictionary than standard words.

2020-03-23 CS F331 / CSCE A331 Spring 2020 21



Introduction to Forth
Characteristics — Scope

Forth allows for local words to be defined within the definition of a 
word. Such local words have static, lexical scope; they cannot 
be used outside the word definition.

Other (global) Forth words are dynamically scoped. They may be 
used at any time after their definition.

When a global Forth word is called, a backwards search is done in 
the dictionary, so the latest version is used.

When a word is compiled (the usual thing to do when defining a 
word), references to the dictionary entries for any words it uses 
are maintained in the compiled code. Thus, if these words are 
redefined, then the compiled word still does the same thing.

2020-03-23 CS F331 / CSCE A331 Spring 2020 22



Introduction to Forth
Characteristics — Dynamic?

Forth has a number of characteristics that make it feel a bit like a 
dynamic programming language.
§ New words may be defined at runtime.
§ Existing words may be redefined at runtime.
§ There are few distinctions between the runtime of a compiled 

program and the interactive environment.

However, I do not call Forth a dynamic PL, primarily due to its type 
system. See the next slide …

2020-03-23 CS F331 / CSCE A331 Spring 2020 23



Introduction to Forth
Characteristics — Type System

Forth supports a very limited set of types.
The majority of Forth operations involve machine integers—like

C/C++ int. These are used as all of the following.
§ Numbers
§ Boolean values (0: false, nonzero: true)
§ Pointers
§ Characters

There is also support for floating-point values and operations.

Forth does not have an extensible type system (like Lua, and 
unlike Java and C++).

However, although Forth arguably has a notion of type, it has no 
type checking. Instead, different types are passed & returned 
via different stacks and handled via different constructions.

2020-03-23 CS F331 / CSCE A331 Spring 2020 24



Introduction to Forth
Build & Execution [1/2]

Forth source files end with the suffix “.fs”.

As with the other PLs we have looked at, Forth supports both 
compilation to an executable file and an interactive 
environment. We will use the latter exclusively.

Starting Gforth runs the interactive environment. In the versions I
have experience with, there is no prompt. Simply type words
and hit <Enter>. When execution completes successfully, “ok” 
will be printed, and you may enter more words.

2020-03-23 CS F331 / CSCE A331 Spring 2020 25



Introduction to Forth
Build & Execution [2/2]

To load a source file in the interactive environment, type the word 
include, and then the filename of the Forth source file.

Example:

include myprog.fs

Or, if you are using a GUI that has—say—a menu item for loading 
files, then you may use that instead.

Once a file is loaded, any words it defines are available for use.

2020-03-23 CS F331 / CSCE A331 Spring 2020 26



Introduction to Forth
Some Programming

I have written a simple example Forth program that computes 
Fibonacci numbers.

TO DO
§ As time permits, run fibo.fs and other Forth code.

2020-03-23 CS F331 / CSCE A331 Spring 2020

See fibo.fs.

27


