Where Are We?
PL Category: Concatenative PLs
Introduction to Forth

CS F331 Programming Languages

CSCE A331 Programming Language Concepts
Lecture Slides

Monday, March 23, 2020

Glenn G. Chappell

Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017-2020 Glenn G. Chappell

Review

2020-03-23 CS F331 / CSCE A331 Spring 2020

Review
Haskell: Data

We made a Binary Tree type, with a data item in each node.

Such a Binary Tree either has no nodes (it is empty) or it has a
root node, which contains a data item and has left and right
subtrees, each of which is a Binary Tree.

The type is called the type BT. It has two constructors.
= BTEmpty gives an empty Binary Tree.

= BTNode, followed by an item of the value type, the left subtree, and
the right subtree, constructs a nonempty tree.

data BT vt = BTEmpty | BTNode vt (BT vt) (BT vt)

L The value type J

We implemented the Treesort algorithm in Haskell, using BT for the

Binary Search Tree. See data.hs.

2020-03-23 CS F331 / CSCE A331 Spring 2020 3

Review
PL Feature: Values & Variables [1/3]

Remember:
= A value has a lifetime: time from construction to destruction.
= An identifier has a scope: where in code it is accessible.

Because a bound variable involves both an identifier and a value,
scope and lifetime are both applicable.

2020-03-23 CS F331 / CSCE A331 Spring 2020

Review
PL Feature: Values & Variables [2/3]

At runtime, a variable is typically implemented as a location in
memory large enough to hold the internal representation of the
variable’s value.

When a variable’s value is set, the value is computed and its
representation is stored in the memory location.

// C++ Functions £ & g are ca!led. Their return values are

. added. Say the result is 37.

int n = £(1) + g(2); This is stored in the memory location for variable n.
Memory n l

37

But what if we are evaluation is lazy?

2020-03-23 CS F331 / CSCE A331 Spring 2020

Review
PL Feature: Values & Variables [3/3]

——- Haskell
n=(f1l) + (g 2)

The usual way to implement a variable when lazy evaluation is
done, is to have an unevaluated variable hold a thunk: a
reference to code whose execution computes a value.

Memory n
Value of n is needed
for the first time.

2020-03-23 CS F331 / CSCE A331 Spring 2020

Where Are We?

2020-03-23 CS F331 / CSCE A331 Spring 2020

Where Are We?
From the First Day of Class: Course Overview — Description

In this class, we study programming languages with a view toward
the following.

= How programming languages are specified, and how these
specifications are used.

= What different kinds of programming languages are like.

= How certain features differ between various programming
languages.

2020-03-23 CS F331 / CSCE A331 Spring 2020 8

Where Are We?
From the First Day of Class: Course Overview — Goals

After taking this class, you should:

Understand the concepts of syntax and semantics, and how
syntax can be specified.

Understand, and have experience implementing, basic lexical
analysis, parsing, and interpretation.

Understand the various kinds of programming languages and
the primary ways in which they differ.

Understand standard programming language features and
the forms these take in different programming languages.

Be familiar with the impact (local, global, etc.) that choice of
programming language has on programmers and users.

Have a basic programming proficiency in multiple
significantly different programming languages.

2020-03-23 CS F331 / CSCE A331 Spring 2020

Where Are We?
From the First Day of Class: Course Overview — Topics

The following topics will be covered:
Formal Languages & Grammars.
PL Feature. Execution I: compilers, interpreters.

PL #1. Lua.
Lexing & Parsing.
PL Feature. Type
PL #2. Haskell.

PL Feature. Values & variables.

Red: Track 1 — Syntax & semantics
of programming languages

Systems. Blue: Track 2 — Programming-
language features & categories, and
specific programming languages

oo

PL #3. Forth.

We are

Semantics & Interpretation. here.
PL Feature. Reflection.

PL #4. Scheme.

PL#5Prolog-

2020-03-23

We lost a week of classes,
so we will not have time
to cover these.

CS F331 / CSCE A331 Spring 2020

10

PL Category: Concatenative PLs

2020-03-23 CS F331 / CSCE A331 Spring 2020

11

PL Category: Concatenative PLs
Background [1/4]

A concatenative programming language is one in which the
concatenation of two programs is a valid program, with the data
returned by the first part being passed to the second part.

The first major concatenative PL was Forth, developed by Charles
H. Moore in the 1960s.

2020-03-23 CS F331 / CSCE A331 Spring 2020 12

PL Category: Concatenative PLs
Background [2/4]

Here is a diagram of a program progl with arrows representing the
data it takes and returns.

—» progl >

Another program prog2:

—» prog2 >

Put the two together to make a new program:

—1» progl [—* prog2 >

From a more theoretical point of view, we say that concatenative
PLs build up programs using composition of functions.

2020-03-23 CS F331 / CSCE A331 Spring 2020 13

PL Category: Concatenative PLs
Background [3/4]

As a more practical example, here is a Forth program.
= Takes: nothing, returns: the integer 5.

Here is another Forth program.
= Takes: an integer, returns: nothing, side effect: prints the integer.

Put the two programs together to get a third Forth program.
= Takes: nothing, returns: nothing, side effect: prints “5”.

2020-03-23 CS F331 / CSCE A331 Spring 2020 14

PL Category: Concatenative PLs
Background [4/4]

Concatenative programming languages have not formed a very
fruitful branch of the PL family tree. However, there are some in
common use.

The concatenative PL that is most heavily used today is probably
PostScript, from Adobe Systems. While considered mostly as a
way of specifying documents to be printed, PostScript is actually
a full-featured programming language.

A concatenative PL that I think deserves more attention is Factor.
This is a dynamic PL that grew out of a scripting language for
games, beginning in 2003.

2020-03-23 CS F331 / CSCE A331 Spring 2020 15

PL Category: Concatenative PLs
Typical Characteristics

A typical concatenative programming language has the following
characteristics.

It is stack-based: stacks are the primary means of passing around
data. Values passed to a program—including function parameters—
are placed on a stack. Return values are left on the same stack.
It has a very simple syntax. Usually a program consists of a
sequence of words, separated by whitespace.
It blurs or eliminates the distinctions between statements, blocks,
and programs.

= See the Forth code a couple of slides back.
It is extensible: little or no distinction is made between built-in
constructs and those put together by a programmer using the PL.

= Compare C++ or Lua.
It is not statically typed. It may be dynamically typed, or it may
have no type checking.

= [speak of a typical concatenative PL. There are statically typed
concatenative PLs.

2020-03-23 CS F331 / CSCE A331 Spring 2020 16

Introduction to Forth
History [1/2]

The next programming language we will look at is Forth. (The
name apparently began as an abbreviation of “"Fourth”, due to a
file system with a five-character limit on filenames.) Forth was
invented in the 1960s by Charles H. Moore, for his own use. The
PL first saw significant use at the U.S. National Radio Astronomy
Observatory.

A Forth interpreter can be very small. So Forth is easy to port—or
to implement from scratch. As a result, essentially every
computer platform produced since 1970 has had a Forth
implementation available. But through much of the history of
Forth, no two of these implementations were compatible.

For many platforms, a Forth interpreter was the first nontrivial
program ever executed on the platform.

2020-03-23 CS F331 / CSCE A331 Spring 2020 17

Introduction to Forth

History [2/2]

Forth became popular in the late 1970s and early 1980s, but its
popularity has waned considerably since then. It remains a
strong influence on some other PLs.

Forth was first standardized in 1983. In 1994, a Forth standard
was issued by ANSI. Reportedly, a revised standard is in the
works. A free implementation of the 1994 standard is available
for most/all modern platforms from the GNU project: Gforth.

An endless number of dialects of Forth exist. We will follow the
1994 ANSI standard; from now on, “Forth” means ANSI
standard Forth, as implemented in Gforth.

2020-03-23 CS F331 / CSCE A331 Spring 2020 18

Introduction to Forth
Characteristics — General

Forth is a concatenative programming language.

= Again, this means that the concatenation of two Forth programs is a
valid Forth program, with the data returned by first part being
passed to the second part.

Like most concatenative PLs, Forth is stack-based: values are
passed and returned via a stack.

Like Java, C++, and Lua—and unlike Haskell—Forth is aimed at
imperative programming: programs consist largely of
instructions that tell a computer what to do.

2020-03-23 CS F331 / CSCE A331 Spring 2020 19

Introduction to Forth
Characteristics — Words

Forth has an extremely simple syntax. Programs consist of
sequences of words: strings of non-space characters, separated
by whitespace. For the purposes of separating words, blanks
and newlines are considered identical.

= Forth does have single-line comments, which end at newline.
= There is special syntax for string literals, which may contain blanks.

Forth words are case-insensitive: “ab;c1”, "aAB;Cc1”, and “aAb;c1”
name the same word.

= In contrast, Java, C++, Lua, and Haskell are all case-sensitive.
“ab” and “aB” are considered distinct identifiers in all of these PLs.

Forth syntax generally does not distinguish between numeric
literals, variables, functions, and flow-of-control constructs.
There are only words.

2020-03-23 CS F331 / CSCE A331 Spring 2020 20

Introduction to Forth

Characteristics — Extensibility

Forth is an extensible programming language. New functionality
has equal status with previously defined functionality.

In particular, Forth allows programmers to:
= Create new flow-of-control constructs.
= Create new words for defining words.
= Redefine standard Forth words.

This extensibility has already been used to create the basic set of
words available when Forth starts up. Many of the words we
commonly use are not actually core Forth words; rather, they
are written in Forth.

Extensibility is accomplished via an internal Forth data structure:
the dictionary. This lists all defined words, in the order they
were defined. Programmer-defined words simply come later in
the dictionary than standard words.

2020-03-23 CS F331 / CSCE A331 Spring 2020 21

Introduction to Forth
Characteristics — Scope

Forth allows for local words to be defined within the definition of a
word. Such local words have static, lexical scope; they cannot
be used outside the word definition.

Other (global) Forth words are dynamically scoped. They may be
used at any time after their definition.

When a global Forth word is called, a backwards search is done in
the dictionary, so the latest version is used.

When a word is compiled (the usual thing to do when defining a
word), references to the dictionary entries for any words it uses
are maintained in the compiled code. Thus, if these words are
redefined, then the compiled word still does the same thing.

2020-03-23 CS F331 / CSCE A331 Spring 2020 22

Introduction to Forth
Characteristics — Dynamic?

Forth has a number of characteristics that make it feel a bit like a
dynamic programming language.
= New words may be defined at runtime.
= Existing words may be redefined at runtime.

= There are few distinctions between the runtime of a compiled
program and the interactive environment.

However, I do not call Forth a dynamic PL, primarily due to its type
system. See the next slide ...

2020-03-23 CS F331 / CSCE A331 Spring 2020 23

Introduction to Forth
Characteristics — Type System

Forth supports a very limited set of types.

The majority of Forth operations involve machine integers—like
C/C++ int. These are used as all of the following.

= Numbers

= Boolean values (0: false, nonzero: true)
= Pointers
= Characters

There is also support for floating-point values and operations.

Forth does not have an extensible type system (like Lua, and
unlike Java and C++).

However, although Forth arguably has a notion of type, it has no
type checking. Instead, different types are passed & returned
via different stacks and handled via different constructions.

2020-03-23 CS F331 / CSCE A331 Spring 2020 24

Introduction to Forth
Build & Execution [1/2]

n

Forth source files end with the suffix V. fs”.

As with the other PLs we have looked at, Forth supports both
compilation to an executable file and an interactive
environment. We will use the latter exclusively.

Starting Gforth runs the interactive environment. In the versions I
have experience with, there is no prompt. Simply type words
and hit <Enter>. When execution completes successfully, “ok”
will be printed, and you may enter more words.

2020-03-23 CS F331 / CSCE A331 Spring 2020 25

Introduction to Forth
Build & Execution [2/2]

To load a source file in the interactive environment, type the word
include, and then the filename of the Forth source file.

Example:

include myprog.fs

Or, if you are using a GUI that has—say—a menu item for loading
files, then you may use that instead.

Once a file is loaded, any words it defines are available for use.

2020-03-23 CS F331 / CSCE A331 Spring 2020 26

Introduction to Forth
Some Programming

I have written a simple example Forth program that computes

Fibonacci numbers. .
See fibo.fs.

TO DO
= As time permits, run fibo.fs and other Forth code.

2020-03-23 CS F331 / CSCE A331 Spring 2020

27

