
PL Category: Functional PLs
Introduction to Haskell

CS F331 Programming Languages
CSCE A331 Programming Language Concepts
Lecture Slides
Friday, February 21, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017–2020 Glenn G. Chappell

Review

2020-02-21 CS F331 / CSCE A331 Spring 2020 2

Review
Overview of Lexing & Parsing

Two phases:
§ Lexical analysis (lexing)
§ Syntax analysis (parsing)

The output of a parser is typically an abstract syntax tree (AST).
Specifications of these will vary.

2020-02-21 CS F331 / CSCE A331 Spring 2020

Parser
Lexeme
Stream

AST or
Error

Lexer

Parsing

Character
Stream

return (*dp + 2.6); //x returnStmt

id: dp

return (*dp + 2.6); //x

binOp: +

unOp: * numLit: 2.6

key

punct

id op num
lit

op

punct

3

Review
The Basics of Syntax Analysis — Categories of Parsers

Parsing methods can be divided into two broad categories.
Top-Down Parsers

§ Go through derivation top to bottom, expanding nonterminals.
§ Important subcategory: LL parsers (read input Left-to-right,

produce Leftmost derivation).
§ Often hand-coded—but not always.
§ Method we look at: Predictive Recursive Descent.

Bottom-Up Parsers
§ Go through the derivation bottom to top, reducing substrings to

nonterminals.
§ Important subcategory: LR parsers (read input Left-to-right,

produce Rightmost derivation).
§ Almost always automatically generated.
§ Method we look at: Shift-Reduce.

2020-02-21 CS F331 / CSCE A331 Spring 2020 4

Review
Parsing Wrap-Up — Efficiency of Parsing

Counting the input size as the number of lexemes/characters:

Practical parsers (and lexers) run in linear time.

This includes state-machine lexers, Predictive Recursive-Descent
parsers and Shift-Reduce parsers.

Various parsing methods are known that can handle all CFLs; these
generally run in cubic time.

Among these is Generalized LR (GLR). This is of particular
interest because
§ it runs faster than cubic time for some grammars, and
§ it easily handles some situations that are difficult for other methods.

GLR is thus considered a useful, practical parsing method—but only
for those grammars for which it is efficient.

2020-02-21 CS F331 / CSCE A331 Spring 2020 5

Review
Parsing Wrap-Up — Parsing in Practice

In my experience, the parser used in a production compiler is
generally one of the following two kinds.
§ A hand-coded top-down parser using Recursive Descent—or

something similar.
§ An automatically generated bottom-up parser using a table-based

Shift-Reduce method—or something similar (usually LALR or GLR).

Producing a parser is a very practical skill, because:

Parsing is making sense of input.

And that is something that computer programs need to do a lot.

2020-02-21 CS F331 / CSCE A331 Spring 2020 6

Review
PL Feature: Type System

The following type-related terms will be particularly important in
the upcoming material.
§ Type
§ Static typing
§ Manifest typing vs. implicit typing
§ Type inference
§ Type annotation
§ First-class functions
§ Sound type system

See A Primer on Type Systems for full information on this topic.

2020-02-21 CS F331 / CSCE A331 Spring 2020 7

PL Category: Functional PLs

2020-02-21 CS F331 / CSCE A331 Spring 2020 8

PL Category: Functional PLs
Background [1/4]

For most of us, our programming experience has largely involved
imperative programming: writing code to tell a computer
what to do. Running a program is thus saying to a computer,
“Follow these instructions.”

This is the predominant paradigm in PLs like Java, C++, and Lua.

An alternative is declarative programming: writing code to tell a
computer what is true. Running a program might be thought of
in terms of asking a question.

The most important declarative programming style is functional
programming.

Later in the semester, we will look at logic programming,
another declarative style.

2020-02-21 CS F331 / CSCE A331 Spring 2020 9

PL Category: Functional PLs
Background [2/4]

Functional programming (FP) is a programming style that
generally has the following characteristics.
§ Computation is considered primarily in terms of the evaluation of

functions—as opposed to execution of tasks.
§ Functions are a primary concern. Rather than mere repositories for

code, functions are values to be constructed and manipulated.
§ Side effects* are avoided. A function’s only job is to return a value.

*A function has a side effect when it makes a change, other than
returning a value, that is visible outside the function.

2020-02-21 CS F331 / CSCE A331 Spring 2020 10

PL Category: Functional PLs
Background [3/4]

One can do functional programming, in some sense, in just about
any PL. However, some PLs support it better than others.

A functional programming language is a PL designed to
support FP well. This is thus a somewhat vague term.
§ No one calls C a functional PL.
§ Opinions vary about JavaScript.
§ Everyone agrees that Haskell is a functional PL.

PLs generally agreed to be functional include Haskell, the ML family
(ML, OCaml, F#), R, and Miranda.

In addition, the Lisp family of PLs (Common Lisp, Emacs Lisp,
Scheme, Clojure, Racket, Logo, Arc) offers excellent support for
FP, but is usually considered as a separate category.

2020-02-21 CS F331 / CSCE A331 Spring 2020 11

PL Category: Functional PLs
Background [4/4]

Functional programming and functional PLs have been around for
many decades, but they remained largely the province of
academia until two things happened.
§ In the 1990s a solution was found to the problem of how to do

interactive I/O in a context where side effects were not allowed.
§ Around 2000, serious attention started to be given to the practical

issues of algorithmic efficiency and resource usage in a functional
context.

Today, FP is becoming increasingly mainstream. Functional PLs are
being used for large projects. Constructs inspired by FP are
being introduced into many PLs.

For example, lambda functions became part of C++ in the 2011
Standard.

2020-02-21 CS F331 / CSCE A331 Spring 2020 12

PL Category: Functional PLs
Typical Characteristics

A typical functional programming language has the following
characteristics.
§ It has first-class functions.
§ It offers good support for higher-order functions*.
§ It offers good support for recursion.
§ It has a preference for immutable** data.

A pure functional PL goes further, and does not support mutable
data at all. There are no side effects in a pure functional PL.

*A higher-order function is a function that acts on functions.
**A value is mutable if it can be changed. Otherwise, it is

immutable—like const values in C++.

2020-02-21 CS F331 / CSCE A331 Spring 2020 13

Introduction to Haskell

2020-02-21 CS F331 / CSCE A331 Spring 2020 14

Introduction to Haskell
History [1/4]

In the mid-20th century, any number of functional PLs were
created, often as part of academic research projects in computer
science or mathematics. Most saw very little use. None saw
widespread use in mainstream programming.

In 1987, members of the FP community met at a conference in
Portland, Oregon. Feeling that their field was too fragmented,
they decided to pool their efforts. A committee was formed, led
by Simon Peyton Jones of Microsoft Research, to create a PL
that could form a stable platform for research, development,
and the promotion of functional programming.

They named this programming language Haskell, after logician
Haskell B. Curry (1900–1982).

2020-02-21 CS F331 / CSCE A331 Spring 2020 15

Introduction to Haskell
History [2/4]

The initial release of Haskell came in 1990.

In the 1990s, the problem of how to do interactive I/O in a pure
functional context was solved, allowing Haskell and FP to enter
the programming mainstream.

Various language definitions in the 1990s culminated in a long-
term standard in 1998: Haskell 98.

The 1998 standard had two primary implementations:
§ Hugs, a lightweight interactive environment supported on all major

platforms.
§ The Glorious Glasgow Haskell Compiler (GHC), a full-featured

compiler.
Hugs has since been folded into GHC; the interactive environment

is now called GHCi.

2020-02-21 CS F331 / CSCE A331 Spring 2020 16

Introduction to Haskell
History [3/4]

2009 saw the release of the Haskell Platform, a collection of
libraries and tools with the goal of creating a high-quality,
“batteries-included” collection of packages that all Haskell
developers could have in common. A new release of the Haskell
Platform comes once or twice each year.

A second Haskell standard was published in 2010: Haskell 2010,
a.k.a. Haskell Prime. The is currently the most recent standard
document.

2020-02-21 CS F331 / CSCE A331 Spring 2020 17

Introduction to Haskell
History [4/4]

Until recently, a third standard was in the works, with the goal of a
2020 release. However, work on this standard slowed around
2016 and has now stopped. There is currently no concrete plan
for a new Haskell standardization document.

Thus, in practice, Haskell is now defined by its primary
implementation: GHC. This fully supports the 2010 standard. It
also includes a number of language extensions (over 100),
which can be optionally enabled.

Haskell is now a robust, well supported PL, suitable for large
projects. However, its unusual nature means that it still meets a
fair amount of resistance from traditionally minded
programmers.

2020-02-21 CS F331 / CSCE A331 Spring 2020 18

Introduction to Haskell
Characteristics — Type System [1/5]

Haskell is a pure functional PL. It has first-class functions and
excellent support for higher-order functions.

Haskell has a sound static type system with sophisticated type
inference. So typing is largely inferred, and thus implicit;
however, we are allowed to write type annotations, if we wish.

Haskell’s type-checking standards are difficult to place on the
nominal-structural axis.

Haskell has few implicit type conversions. Support for the definition
of new implicit type conversions lies somewhere between
minimal and nonexistent.

2020-02-21 CS F331 / CSCE A331 Spring 2020 19

Introduction to Haskell
Characteristics — Type System [2/5]

Like C++ and Java, Haskell does static typing of both variables and
values. Unlike C++ and Java, Haskell includes sophisticated
type inference (based on the Hindley-Milner type-inference
algorithm). Thus, types usually do not need to be specified.

In C++:

int n = 3;

In Haskell:

n = 3

Of course, in Lua we can say that, too. But in contrast to Lua,
every variable gets a type in Haskell. For example, above, n has
type Integer; the compiler figures this out for us.

2020-02-21 CS F331 / CSCE A331 Spring 2020 20

Introduction to Haskell
Characteristics — Type System [3/5]

Haskell still allows type annotations, if desired. We can say:

n :: Integer
n = 3

This lets us communicate our intentions to be compiler. For
example, the following is legal.

s = "abc"

But this will not compile:

s :: Integer
s = "abc" -- Type error: "abc" is not of type Integer

2020-02-21 CS F331 / CSCE A331 Spring 2020 21

Introduction to Haskell
Characteristics — Type System [4/5]

We can also use Haskell type annotations to restrict which types
are allowed. Below is a function with its natural type annotation.
If this annotation were omitted, the result would be the same.

blug :: (Num t, Eq t) => t -> t -> Bool
blug a b = (a == b+1)

The above says that blug is a function that takes two values of
type t, where t is any numeric type with the equality operator
defined. And blug returns a Boolean.

But if we want blug to take only Integer values, we can do this:

blug :: Integer -> Integer -> Bool
blug a b = (a == b+1)

2020-02-21 CS F331 / CSCE A331 Spring 2020 22

Introduction to Haskell
Characteristics — Type System [5/5]

Haskell’s type system is extensible. We can create new types. We
can also overload functions and operators to use them.

However, unlike many modern PLs, such extensibility is not
facilitated via constructs that support object-oriented
programming.

Arguably, Haskell has no need for OOP constructions. Problems
that are solved using OOP in some PLs can be solved by other
means in Haskell (closures, for example).

2020-02-21 CS F331 / CSCE A331 Spring 2020 23

Introduction to Haskell
Characteristics — Flow of Control [1/2]

Iteration is difficult without mutable data. And, indeed, Haskell has
no iterative flow-of-control constructs. To be perfectly clear:
Haskell has no loops!

Instead of iteration, Haskell uses recursion, with tail recursion
preferred. The latter will generally be optimized using tail call
optimization (TCO).

Haskell implementations are required to do TCO. This means the
last operation in a function is not implemented via a function
call, but rather as the equivalent of a goto, never returning to
the original function.

However, we often do not make recursive calls explicitly. Instead,
we use functions that encapsulate recursive execution.

2020-02-21 CS F331 / CSCE A331 Spring 2020 24

Introduction to Haskell
Characteristics — Flow of Control [2/2]

Haskell has an if … else construction, but it is often more
convenient to use pattern matching.

Example: a recursive factorial function in C++ and Haskell.

int factorial(int n) // C++
{

if (n == 0) return 1;
return n * factorial(n-1);

}

factorial 0 = 1 -- Haskell
factorial n = n * factorial (n-1)

2020-02-21 CS F331 / CSCE A331 Spring 2020

Patterns

25

Introduction to Haskell
Characteristics — Syntax [1/2]

Haskell has a simple syntax, with less punctuation than C++—and
even less than Lua.

Here are function calls in C++ and Lua.

foo(a, b, c); // C++
foo(a, b, c) -- Lua

Here is a more or less equivalent function call in Haskell.

foo a b c -- Haskell

2020-02-21 CS F331 / CSCE A331 Spring 2020 26

Introduction to Haskell
Characteristics — Syntax [2/2]

Haskell has significant indentation. Indenting is the usual way
to indicate the start & end of a block. Here is Lua.

function bar(a)
local b = 42 // Indented, but only for
local c = 30 * b + 1 // readability; the compiler
return foo(a, b, c) // ignores indentation.

end

And here is the more or less equivalent Haskell.

bar a = foo a b c where
b = 42
c = 30 * b + 1 -- We MUST indent this line.

2020-02-21 CS F331 / CSCE A331 Spring 2020 27

Introduction to Haskell
Characteristics — Evaluation [1/2]

By default Haskell does lazy evaluation: expressions are not
evaluated until they need to be.

C++, Java, and Lua do the opposite, evaluating as soon as an
expression is encountered; this is eager evaluation.

For example, here is a function in Lua, and then in Haskell.

function f(x, y)
return x+1 -- y is not used

end

f x y = x+1 -- y is not used

We look at what eager vs. lazy evaluation means for these.

2020-02-21 CS F331 / CSCE A331 Spring 2020 28

Introduction to Haskell
Characteristics — Evaluation [2/2]

function f(x, y)
return x+1 -- y is not used

end

Lua (eager). Do “f(g(1), g(2))”. Function g is called with 1.
Then g is called with 2. The return values are passed to f.

f x y = x+1 -- y is not used

Haskell (lazy). Do “f (g 1) (g 2)”. Function f is called; this uses
its first parameter (x), so g is called with argument 1, and its
return value becomes x. Then f adds 1 to this and returns the
result. The second call to g is never made.

If the return value of f is not used, then no calls to g are made!
Lazy evaluation has other interesting consequences, as we will see.

2020-02-21 CS F331 / CSCE A331 Spring 2020 29

Introduction to Haskell
Build & Execution [1/3]

The standard filename suffix for Haskell source files is “.hs”.

GHC is a Haskell compiler that usually generates native machine
code. On the command line, GHC is used much like g++, clang,
or any other command-line compiler.

ghc myprog.hs -o myprog

If there are no errors, then an executable named myprog will be
created. Running that file will execute function main in module
Main (a module in Haskell is much like a module in Lua).

Of course, if you are using an IDE, then things are handled
differently. GHC is supported by various IDEs, including Eclipse.

2020-02-21 CS F331 / CSCE A331 Spring 2020 30

Introduction to Haskell
Build & Execution [2/3]

GHCi is an interactive environment that interprets Haskell code.
Such an environment is often called a Read-Eval-Print Loop
(REPL), a term originating with Lisp.

GHCi can load source files or evaluate entered Haskell expressions.
Haskell is compiled to a bytecode, which is interpreted.

After running GHCi, you are presented with a prompt. GHCi
commands begin with colon (:). Some important commands:

:l FILENAME.hs
Load & compile the given source file. Afterward, calls to
functions in the file may be typed in at the prompt.

:r

Reload the last file loaded. Useful if you change a file.

Continued …

2020-02-21 CS F331 / CSCE A331 Spring 2020 31

Introduction to Haskell
Build & Execution [3/3]

Continuing with GHCi commands:

:t EXPRESSION
Get the type of a Haskell expression. The expression can involve
variables and functions defined in a file that has been loaded.

:i IDENTIFIER
Get information about the identifier: its type; precedence and
associativity if it is an operator; perhaps the file it is defined in.

To evaluate a Haskell expression, enter the expression.
To define a Haskell variable or function, enter the definition.

n = 5

2020-02-21 CS F331 / CSCE A331 Spring 2020 32

Introduction to Haskell
Some Programming

I have written a simple example Haskell program that computes
Fibonacci numbers.

TO DO
§ As time permits, run fibo.hs and other Haskell code.

2020-02-21 CS F331 / CSCE A331 Spring 2020

See fibo.hs.

33

