Formal Languages & Grammars |continued

CS F331 Programming Languages

CSCE A331 Programming Language Concepts
Lecture Slides

Wednesday, January 15, 2020

Glenn G. Chappell

Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017-2020 Glenn G. Chappell



Review

2020-01-15 CS F331 / CSCE A331 Spring 2020



Review
Course Overview

In this class, we study programming languages with a view toward
the following.

= How programming languages are specified, and how these
specifications are used.

= What different kinds of programming languages are like.

= How certain features differ between various programming
languages.

You will need to obtain access to the following programming
languages (all are freely available on the web).
= Lua. Version 5.1 or later.
= Haskell. Install The Haskell Platform.
= Forth. Get the GNU version: Gforth.
= Scheme. Install DrRacket.
= Prolog. Get the GNU version: gprolog.

2020-01-15 CS F331 / CSCE A331 Spring 2020



Review
Introduction to Syntax & Semantics

“"Dynamic” means at runtime.
“Static” means before runtime.

Syntax is the correct structure of code.
Semantics is the meaning of code.

In programming languages like C++ and Java, which have static
type checking, type errors lie in a gray area between syntax and
semantics. We classify these under static semantics. What
code does when it is executed involves dynamic semantics.

Coming Up
= How the syntax of a programming language is specified.
= How such specifications are used.
= Write a lexer and a parser; the latter checks syntactic correctness.
= Later, a brief study of semantics.

2020-01-15 CS F331 / CSCE A331 Spring 2020 4



Review
Formal Languages & Grammars — Formal Languages [1/2]

A (formal) language is a set of strings. Not the same as a
programming language!

Alphabet: the set of characters that may appear in the strings.

For now, we write strings without quotes (for example, abc). We
represent the empty string with a lower-case Greek epsilon (¢).

Example of a language over {0, 1}:
{¢, 01, 0101, 010101, 01010101, ..}

Important examples of formal languages:

= The set of all lexemes in some category, for some programming
language (e.g., the set of all legal C++ identifiers).

= The set of all syntactically correct programs, in some programming
language (e.g., the set of all syntactically correct Lua programs).

2020-01-15 CS F331 / CSCE A331 Spring 2020



Review
Formal Languages & Grammars — Formal Languages [2/2]

Two ways to describe a formal language.

= With a generator: something that can produce the strings in a
formal language—all of them, and nothing else.

= With a recognizer: a way of determining whether a given string
lies in the formal language.

Generally:
= (Generators are easier to construct.
= Recognizers are more useful.

We often begin with a generator and then construct a recognizer
based on it.

This construction process might be automated (but in this class it
will not be).

2020-01-15 CS F331 / CSCE A331 Spring 2020



Review
Formal Languages & Grammars — Grammars [1/4]

A (phrase-structure) grammar is a kind of language generator.

Needed

= A collection of terminal symbols. This is our alphabet.

= A collection of nonterminal symbols. These are like variables that
eventually turn into something else. One nonterminal symbol is the
start symbol.

Conventions, for now:
= Terminal symbols are lower-case letters (a b x)

= Nonterminal symbols are upper-case letters (C Q S)
= The start symbol is S.

2020-01-15 CS F331 / CSCE A331 Spring 2020 7



Review
Formal Languages & Grammars — Grammars [2/4]

A grammar is a list of one or more productions. A production is a
rule for altering strings by substituting one substring for
another. The strings are made of terminal and nonterminal

symbols.

Here is a grammar with three productions.

S —» xSy
S - a
S > ¢

An important application of grammars is specifying programming-
language syntax. Since the 1970s, nearly all programming
languages have used a grammar for their a syntax specification.

2020-01-15 CS F331 / CSCE A331 Spring 2020 8



Review
Formal Languages & Grammars — Grammars [3/4]

LS sy | Tepmumes e DSrivation of xonyy
. : ~=—> S
2. S>—a e ot port of the demnstion, xSy
3. S —>¢ 1 XX§yy
: XXXSYyy
] XXXYYY
Using a grammar: Noe” !
= Begin with the start symbol. appears here.
= Repeat:

= Apply a production, replacing the left-hand side of the production (which
must be a contiguous collection of symbols in the current string) with
the right-hand side.

= We can stop only when there are no more nonterminals.

The result is a derivation of the final string.

2020-01-15 CS F331 / CSCE A331 Spring 2020 9



Review
Formal Languages & Grammars — Grammars [4/4]

Grammar
S —» xSy
S—>a
S—>¢

The language generated by a grammar consists of all strings for
which there is a derivation.

= So xxxyyy lies in the language generated by the above grammar.

Avoid saying,
_ “any number of ...".
Q. What language does this grammar generate?

A. The set of all strings that consist of zero or more x’s, followed
by an optional a, followed by zero or more y’s, with the same
number of y’s as x’s.

{€, Xy, XXyy, Xxxxyyy, ..., @, xay, xxayy, xxxayyy, ...»

2020-01-15 CS F331 / CSCE A331 Spring 2020 10



Review
Formal Languages & Grammars — TRY IT #1 (Answers)

Grammar A Derivation of xxxa
1. §— Sa . S
2. S > xS , Sa
3. S —>x xSa

2

5 xxSa

Xxxa

Answers

1. Based on Grammar A, write a derivation for xxxa.

See above, on the right.

2. Is there a derivation based on Grammar A for the string aaa?
No, every string in the language generated begins with x.

3. What language does Grammar A generate?

The language generated is the set of all strings consisting of one or
more x’s followed by zero or more a’s.

2020-01-15 CS F331 / CSCE A331 Spring 2020 11



Review
Formal Languages & Grammars — TRY IT #1 (Note)

Grammar A

1. §— Sa
2. §—> x5
3. §—->Xx
Derivation #1 Derivation #2 Derivation #3
, S , S , S
, Sa , XS , XS
, xSa , xSa , xxS
xx5Sa xx5Sa xx5Sa
] Xxxa ] Xxxa ] XXxxa

There is more than one derivation of the string xxxa based on
Grammar A. This is typical.

2020-01-15 CS F331 / CSCE A331 Spring 2020 12



Formal Languages & Grammars

continued

2020-01-15 CS F331 / CSCE A331 Spring 2020



Formal Languages & Grammars
TRY IT #2 (Exercises)

Grammar B Grammar C
S > XY S-S A

X — a A — XA
X—b A — AA

Y >t

Y - u

Exercises

4. What language does Grammar B generate?

5. What language does Grammar C generate?
Hint. This is almost-but-not-quite a trick guestion.

2020-01-15 CS F331 / CSCE A331 Spring 2020

14



Formal Languages & Grammars
TRY IT #2 (Answers)

Grammar B Grammar C
S > XY S-S A

X — a A — XA
X—b A — AA

Y >t

Y - u

Answers

4. What language does Grammar B generate?
The language generated is {at, au, bt, bu}.

5. What language does Grammar C generate?
Hint. This is almost-but-not-quite a trick question.

The language generated contains no strings: {}.

The language containing no strings is not the same
as the language containing only the empty string!

2020-01-15 CS F331 / CSCE A331 Spring 2020

15



Formal Languages & Grammars
TRY IT #3 (Exercises)

Exercises

6. Write a grammar that generates the following language:
{ ab, abb, abbb, abbbb, abbbbb, abbbbbb, ... }

/7. How could we change this grammar so that the language it
generates also contains the string “a”?

2020-01-15 CS F331 / CSCE A331 Spring 2020

16



Formal Languages & Grammars
TRY IT #3 (Answers)

Answers

6. Write a grammar that generates the following language:
{ ab, abb, abbb, abbbb, abbbbb, abbbbbb, ... }

Grammar

S 5 aX “X — bX" would
/ also work here.

X — Xb

X —>b

/. How could we change this grammar so that the language it
generates also contains the string “a”?

Replace the production "X — b” with "X — £”.

2020-01-15 CS F331 / CSCE A331 Spring 2020

17



Formal Languages & Grammars
The Chomsky Hierarchy — Introduction

In the late 1950s, linguist Noam Chomsky described a hierarchy of
categories of formal languages, defined in terms of the kinds of
grammars that could generate them. Chomsky aimed to develop
a framework for studying natural languages; however, his
hierarchy has proved to be useful in the theory of computation.

The Chomsky Hierarchy includes four categories of languages. He
called them types 3, 2, 1, and 0. More modern names are
regular, context-free, context-sensitive, and computably
enumerable.

For each language category, there is an associated category of
grammars that can generate that kind of language. The same
names are used for the grammar categories (for example, a
regular grammar generates a regular language).

2020-01-15 CS F331 / CSCE A331 Spring 2020 18



Formal Languages & Grammars
The Chomsky Hierarchy — The Hierarchy [1/2]

Here is the Chomsky Hierarchy.

Language Category

Generator Recognizer
Number Name
Type 3 Regular Grammar in which each production Deterministic Finite
has one of the following forms. Automaton
A—>c¢ Think: Program that uses a small,
. ASb fixed amount of memory.
A — bC
Another kind of generator: regular
expressions (covered later).
Type 2 Context- Grammar in which the left-hand side | Nondeterministic Push-Down
Free of each production consists of a Automaton
single nonterminal. Think: Finite Automaton + Stack
A — [anything] (roughly).
Type 1 Context- Don’t worry about it. Don’t worry about it.
Sensitive
Type O Computably | Grammar (no restrictions). Turing Machine
Enumerable Think: Computer Program
2020-01-15 CS F331 / CSCE A331 Spring 2020 19



Formal Languages & Grammars
The Chomsky Hierarchy — The Hierarchy [2/2]

Each category of languages in the Chomsky Hierarchy is contained
in the next. So every regular language is context-free, etc.

Computably
Enumerable Languages

Context-Sensitive Languages

Context-Free Languages

Regular Languages

Next we look briefly at each category in the Chomsky Hierarchy,
how it is defined, and why we care about it.

2020-01-15 CS F331 / CSCE A331 Spring 2020 20



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [1/5]

A regular language is one that can be generated by a grammar
in which each production has one of the following forms.

= A—>c¢
= A—>b
= A > bC
Alternative generator: regular expression (covered later).

A regular language can be recognized by a deterministic finite
automaton.

= Think: a program using only a small, fixed amount of memory.

Regular languages generally describe lexeme categories.
= The set of all legal C++ identifiers is a regular language.

Thus, these languages encompass the level of computation
required for lexical analysis: breaking a program into lexemes.

Regular languages are also used in text search/replace.

2020-01-15 CS F331 / CSCE A331 Spring 2020 21



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [2/5]

A context-free language is one that can be generated by a
grammar in which the left-hand each production consists of a
single nonterminal.

= A — [anything]
A context-free language can be recognized by a nondeterministic
push-down automaton.
= Roughly: a finite automaton plus a memory that acts as a stack.

Context-free languages generally describe programming-language
syntactic correctness.

= The set of all syntactically correct Lua programs (for example) is a
context-free language.

Thus, these languages encompass the level of computation
required for parsing: determining whether a program is
syntactically correct, and, if so, how it is structured.

2020-01-15 CS F331 / CSCE A331 Spring 2020 22



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [3/5]

As for context-sensitive languages: we generally do not care.

= I would call this category a mistake—an idea that Chomsky thought
would be fruitful, but turned out not to be.

= I mention this category only for historical interest. You do not need
to know anything about context-sensitive languages.

You may stop reading this slide here.

In case anyone is interested: The kind of grammar that describes a
context-sensitive language allows restricting the expansion of a
nonterminal to a particular context. For example, such a
grammar might include the following production.

XAy — XBcy

So A can be expanded to Bc, as long as it lies between x and vy.

And the recognizer for a context-sensitive language is called a
linear bounded automaton. Google it, if you wish. Or don't.

2020-01-15 CS F331 / CSCE A331 Spring 2020 23



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [4/5]

A computably enumerable language is one that can be

described by a grammar. We place no restrictions on the
productions in the grammar.

The recognizer for a computably enumerable language is a Turing
machine—a formalization of a computer program.

We care about computably enumerable languages because they
encompass the things that computer programs can do.

= If a language is computably enumerable,
then some computer program is a

recognizer for it. Computably er_lumerable
] . languages are important,
= Otherwise, no such program exists. but we will not discuss them

any further in this class.

Note. This kind of language is also called a recursively
enumerable language. This terminology comes from a branch
of mathematics called recursive function theory.

2020-01-15 CS F331 / CSCE A331 Spring 2020 24



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [5/5]

Summary

= A lexeme category (e.g., C++ identifiers) generally forms a regular
language. Recognition of a regular language is thus the level of
computation required for lexical analysis—and text search/replace.

= In most programming languages, the set of all syntactically correct
programs forms a context-free language. Recognition of context-
free languages is thus the level of computation required for parsing.

= Context-sensitive languages are mostly a historical curiosity.

= Recognition of computably enumerable languages encompasses
the tasks that computer programs are capable of. These languages
are important in the theory of computation.

Our next topic is Regular Languages. We will cover ideas to be
used in lexical analysis.

After that, we study Context-Free Languages, covering ideas to be
used in parsing.

2020-01-15 CS F331 / CSCE A331 Spring 2020 25



