
Formal Languages & Grammars

CS F331 Programming Languages
CSCE A331 Programming Language Concepts
Lecture Slides
Wednesday, January 15, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2017–2020 Glenn G. Chappell

continued



Review

2020-01-15 CS F331 / CSCE A331 Spring 2020 2



2020-01-15 CS F331 / CSCE A331 Spring 2020

Review
Course Overview

In this class, we study programming languages with a view toward 
the following.
§ How programming languages are specified, and how these 

specifications are used.
§ What different kinds of programming languages are like.
§ How certain features differ between various programming 

languages.

You will need to obtain access to the following programming 
languages (all are freely available on the web).
§ Lua. Version 5.1 or later.
§ Haskell. Install The Haskell Platform.
§ Forth. Get the GNU version: Gforth.
§ Scheme. Install DrRacket.
§ Prolog. Get the GNU version: gprolog.

3



2020-01-15 CS F331 / CSCE A331 Spring 2020

Review
Introduction to Syntax & Semantics

“Dynamic” means at runtime.
“Static” means before runtime.

Syntax is the correct structure of code.
Semantics is the meaning of code.
In programming languages like C++ and Java, which have static 

type checking, type errors lie in a gray area between syntax and 
semantics. We classify these under static semantics. What 
code does when it is executed involves dynamic semantics.

Coming Up
§ How the syntax of a programming language is specified.
§ How such specifications are used.
§ Write a lexer and a parser; the latter checks syntactic correctness.
§ Later, a brief study of semantics.

4



2020-01-15 CS F331 / CSCE A331 Spring 2020

Review
Formal Languages & Grammars — Formal Languages [1/2]

A (formal) language is a set of strings.

Alphabet: the set of characters that may appear in the strings.

For now, we write strings without quotes (for example, abc). We 
represent the empty string with a lower-case Greek epsilon (ε).

Example of a language over {0, 1}:
{ε, 01, 0101, 010101, 01010101, …}

Important examples of formal languages:
§ The set of all lexemes in some category, for some programming 

language (e.g., the set of all legal C++ identifiers).
§ The set of all syntactically correct programs, in some programming 

language (e.g., the set of all syntactically correct Lua programs).

Not the same as a 
programming language!

5



2020-01-15 CS F331 / CSCE A331 Spring 2020

Review
Formal Languages & Grammars — Formal Languages [2/2]

Two ways to describe a formal language.
§ With a generator: something that can produce the strings in a 

formal language—all of them, and nothing else.
§ With a recognizer: a way of determining whether a given string 

lies in the formal language.

Generally:
§ Generators are easier to construct.
§ Recognizers are more useful.

We often begin with a generator and then construct a recognizer 
based on it.

This construction process might be automated (but in this class it 
will not be).

6



Review
Formal Languages & Grammars — Grammars [1/4]

A (phrase-structure) grammar is a kind of language generator.

Needed
§ A collection of terminal symbols. This is our alphabet.
§ A collection of nonterminal symbols. These are like variables that 

eventually turn into something else. One nonterminal symbol is the 
start symbol.

Conventions, for now:
§ Terminal symbols are lower-case letters (a b x)
§ Nonterminal symbols are upper-case letters (C Q S)
§ The start symbol is S.

2020-01-15 CS F331 / CSCE A331 Spring 2020 7



Review
Formal Languages & Grammars — Grammars [2/4]

A grammar is a list of one or more productions. A production is a 
rule for altering strings by substituting one substring for 
another. The strings are made of terminal and nonterminal 
symbols.

Here is a grammar with three productions.

S → xSy
S → a
S → ε

An important application of grammars is specifying programming-
language syntax. Since the 1970s, nearly all programming 
languages have used a grammar for their a syntax specification.

2020-01-15 CS F331 / CSCE A331 Spring 2020 8



Review
Formal Languages & Grammars — Grammars [3/4]

Grammar
1. S → xSy
2. S → a
3. S → ε

Using a grammar:
§ Begin with the start symbol.
§ Repeat:

§ Apply a production, replacing the left-hand side of the production (which 
must be a contiguous collection of symbols in the current string) with 
the right-hand side.

§ We can stop only when there are no more nonterminals.

The result is a derivation of the final string.

2020-01-15 CS F331 / CSCE A331 Spring 2020

Derivation of xxxyyy
S
xSy
xxSyy
xxxSyyy
xxxyyy

1

1

1

3

No “ε”
appears here.

The numbers and underlining 
are annotations that I find 
helpful. Strictly speaking, they 
are not part of the derivation.

9



Review
Formal Languages & Grammars — Grammars [4/4]

Grammar
S → xSy
S → a
S → ε

The language generated by a grammar consists of all strings for 
which there is a derivation.
§ So xxxyyy lies in the language generated by the above grammar.

Q. What language does this grammar generate?
A. The set of all strings that consist of zero or more x’s, followed 

by an optional a, followed by zero or more y’s, with the same 
number of y’s as x’s.

{ε, xy, xxyy, xxxyyy, …, a, xay, xxayy, xxxayyy, …}

2020-01-15 CS F331 / CSCE A331 Spring 2020

Avoid saying,
“any number of …”.

10



Review
Formal Languages & Grammars — TRY IT #1 (Answers)

Grammar A
1. S → Sa
2. S → xS
3. S → x

Answers
1. Based on Grammar A, write a derivation for xxxa.
See above, on the right.
2. Is there a derivation based on Grammar A for the string aaa?
No, every string in the language generated begins with x.
3. What language does Grammar A generate?
The language generated is the set of all strings consisting of one or 

more x’s followed by zero or more a’s.

2020-01-15 CS F331 / CSCE A331 Spring 2020

Derivation of xxxa
S
Sa
xSa
xxSa
xxxa

1

2

2

3

11



Review
Formal Languages & Grammars — TRY IT #1 (Note)

Grammar A
1. S → Sa
2. S → xS
3. S → x

There is more than one derivation of the string xxxa based on 
Grammar A. This is typical.

2020-01-15 CS F331 / CSCE A331 Spring 2020

Derivation #2
S
xS
xSa
xxSa
xxxa

2

1

2

3

Derivation #1
S
Sa
xSa
xxSa
xxxa

1

2

2

3

Derivation #3
S
xS
xxS
xxSa
xxxa

2

2

1

3

12



Formal Languages & Grammars

2020-01-15 CS F331 / CSCE A331 Spring 2020

continued

13



Formal Languages & Grammars
TRY IT #2 (Exercises)

Grammar B
S → XY
X → a
X → b
Y → t
Y → u

Exercises
4. What language does Grammar B generate?
5. What language does Grammar C generate?

Hint. This is almost-but-not-quite a trick question.

2020-01-15 CS F331 / CSCE A331 Spring 2020

Grammar C
S → A
A → xA
A → AA

14



Formal Languages & Grammars
TRY IT #2 (Answers)

Grammar B
S → XY
X → a
X → b
Y → t
Y → u

Answers
4. What language does Grammar B generate?
The language generated is {at, au, bt, bu}.
5. What language does Grammar C generate?

Hint. This is almost-but-not-quite a trick question.
The language generated contains no strings: {}.

2020-01-15 CS F331 / CSCE A331 Spring 2020

Grammar C
S → A
A → xA
A → AA

The language containing no strings is not the same 
as the language containing only the empty string!

15



Formal Languages & Grammars
TRY IT #3 (Exercises)

Exercises
6. Write a grammar that generates the following language:

{ ab, abb, abbb, abbbb, abbbbb, abbbbbb, … }

7. How could we change this grammar so that the language it 
generates also contains the string “a”?

2020-01-15 CS F331 / CSCE A331 Spring 2020 16



Formal Languages & Grammars
TRY IT #3 (Answers)

Answers
6. Write a grammar that generates the following language:

{ ab, abb, abbb, abbbb, abbbbb, abbbbbb, … }

Grammar
S → aX
X → Xb
X → b

7. How could we change this grammar so that the language it 
generates also contains the string “a”?

Replace the production “X → b” with “X → ε”.

2020-01-15 CS F331 / CSCE A331 Spring 2020

“X → bX” would 
also work here.

17



Formal Languages & Grammars
The Chomsky Hierarchy — Introduction

In the late 1950s, linguist Noam Chomsky described a hierarchy of 
categories of formal languages, defined in terms of the kinds of 
grammars that could generate them. Chomsky aimed to develop 
a framework for studying natural languages; however, his 
hierarchy has proved to be useful in the theory of computation.

The Chomsky Hierarchy includes four categories of languages. He 
called them types 3, 2, 1, and 0. More modern names are 
regular, context-free, context-sensitive, and computably 
enumerable.

For each language category, there is an associated category of 
grammars that can generate that kind of language. The same 
names are used for the grammar categories (for example, a 
regular grammar generates a regular language).

2020-01-15 CS F331 / CSCE A331 Spring 2020 18



2020-01-15 CS F331 / CSCE A331 Spring 2020

Formal Languages & Grammars
The Chomsky Hierarchy — The Hierarchy [1/2]

Here is the Chomsky Hierarchy.

Language Category
Generator Recognizer

Number Name

Type 3 Regular Grammar in which each production 
has one of the following forms.
• A → ε
• A → b
• A → bC
Another kind of generator: regular 
expressions (covered later).

Deterministic Finite 
Automaton
Think: Program that uses a small, 
fixed amount of memory.

Type 2 Context-
Free

Grammar in which the left-hand side 
of each production consists of a 
single nonterminal.
• A → [anything]

Nondeterministic Push-Down 
Automaton
Think: Finite Automaton + Stack 
(roughly).

Type 1 Context-
Sensitive

Don’t worry about it. Don’t worry about it.

Type 0 Computably 
Enumerable

Grammar (no restrictions). Turing Machine
Think: Computer Program

19



Formal Languages & Grammars
The Chomsky Hierarchy — The Hierarchy [2/2]

Each category of languages in the Chomsky Hierarchy is contained 
in the next. So every regular language is context-free, etc.

Next we look briefly at each category in the Chomsky Hierarchy, 
how it is defined, and why we care about it.

2020-01-15 CS F331 / CSCE A331 Spring 2020

Computably 
Enumerable Languages

Context-Free Languages

Context-Sensitive Languages

Regular Languages

20



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [1/5]

A regular language is one that can be generated by a grammar 
in which each production has one of the following forms.
§ A → ε
§ A → b
§ A → bC

Alternative generator: regular expression (covered later).
A regular language can be recognized by a deterministic finite 

automaton.
§ Think: a program using only a small, fixed amount of memory.

Regular languages generally describe lexeme categories.
§ The set of all legal C++ identifiers is a regular language.

Thus, these languages encompass the level of computation 
required for lexical analysis: breaking a program into lexemes.

Regular languages are also used in text search/replace.

2020-01-15 CS F331 / CSCE A331 Spring 2020 21



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [2/5]

A context-free language is one that can be generated by a 
grammar in which the left-hand each production consists of a 
single nonterminal.
§ A → [anything]

A context-free language can be recognized by a nondeterministic 
push-down automaton.
§ Roughly: a finite automaton plus a memory that acts as a stack.

Context-free languages generally describe programming-language 
syntactic correctness.
§ The set of all syntactically correct Lua programs (for example) is a 

context-free language.
Thus, these languages encompass the level of computation 

required for parsing: determining whether a program is 
syntactically correct, and, if so, how it is structured.

2020-01-15 CS F331 / CSCE A331 Spring 2020 22



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [3/5]

As for context-sensitive languages: we generally do not care.
§ I would call this category a mistake—an idea that Chomsky thought 

would be fruitful, but turned out not to be.
§ I mention this category only for historical interest. You do not need 

to know anything about context-sensitive languages.

In case anyone is interested: The kind of grammar that describes a 
context-sensitive language allows restricting the expansion of a 
nonterminal to a particular context. For example, such a 
grammar might include the following production.

xAy → xBcy

So A can be expanded to Bc, as long as it lies between x and y.
And the recognizer for a context-sensitive language is called a 

linear bounded automaton. Google it, if you wish. Or don’t.

2020-01-15 CS F331 / CSCE A331 Spring 2020 23

You may stop reading this slide here.



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [4/5]

A computably enumerable language is one that can be 
described by a grammar. We place no restrictions on the 
productions in the grammar.

The recognizer for a computably enumerable language is a Turing 
machine—a formalization of a computer program.

We care about computably enumerable languages because they 
encompass the things that computer programs can do.
§ If a language is computably enumerable,

then some computer program is a
recognizer for it.

§ Otherwise, no such program exists.

Note. This kind of language is also called a recursively 
enumerable language. This terminology comes from a branch 
of mathematics called recursive function theory.

2020-01-15 CS F331 / CSCE A331 Spring 2020

Computably enumerable 
languages are important, 

but we will not discuss them 
any further in this class.

24



Formal Languages & Grammars
The Chomsky Hierarchy — Why We Care [5/5]

Summary
§ A lexeme category (e.g., C++ identifiers) generally forms a regular 

language. Recognition of a regular language is thus the level of 
computation required for lexical analysis—and text search/replace.

§ In most programming languages, the set of all syntactically correct 
programs forms a context-free language. Recognition of context-
free languages is thus the level of computation required for parsing.

§ Context-sensitive languages are mostly a historical curiosity.
§ Recognition of computably enumerable languages encompasses 

the tasks that computer programs are capable of. These languages 
are important in the theory of computation.

Our next topic is Regular Languages. We will cover ideas to be 
used in lexical analysis.

After that, we study Context-Free Languages, covering ideas to be 
used in parsing.

2020-01-15 CS F331 / CSCE A331 Spring 2020 25


