
Other Graph Topics
Course Wrap-Up

CS 311 Data Structures and Algorithms
Lecture Slides
Friday, December 4, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman



Review

2020-12-04 CS 311 Fall 2020 2



2020-12-04 CS 311 Fall 2020

The Rest of the Course
Overview

Two Final Topics
§ External Data

§ Previously, we dealt only with data stored in memory.
§ Suppose, instead, that we wish to deal with data stored on an external 

device, accessed via a relatively slow connection and available in sizable 
chunks (data on a disk, for example).

§ How does this affect the design of algorithms and data structures?
§ Graph Algorithms

§ A graph models relationships between pairs
of objects.

§ This is a very general notion. Algorithms for
graphs often have very general applicability.

P

Drawing of 
a Graph

This usage of “graph” has 
nothing to do with the graph 
of a function. It is a different 

definition of the word.

(part) 

3



2020-12-04 CS 311 Fall 2020

Review
Introduction to Graphs [1/3]

A graph consists of vertices and edges.
§ An edge joins two vertices: its endpoints.
§ 1 vertex, 2 vertices (Latin plural).
§ Two vertices joined by an edge are 

adjacent; each is a neighbor of the other.

In a weighted graph, each edge has a 
weight (or cost).
§ The weight is the resource expenditure 

required to use that edge.
§ We typically choose edges to minimize the 

total weight of some kind of collection.

Vertex

Edge

Weight 
(cost)

Graph

Weighted
Graph

2

61
2

4



2020-12-04 CS 311 Fall 2020

Review
Introduction to Graphs [2/3]

Two common ways to represent graphs.

Adjacency matrix. 2-D array of 0/1 values.
§ “Are vertices i, j adjacent?” in Θ(1) time.
§ Finding all neighbors of a vertex is slow for 

large, sparse graphs.

Adjacency lists. List of lists (arrays?).
List i holds neighbors of vertex i.
§ “Are vertices i, j adjacent?” in Θ(log N) time 

if lists are sorted arrays; Θ(N) if not.
§ Finding all neighbors can be faster.

0

1 2
3

Graph

0 1 2 3
0 1 0 10

1 0 0 01

0 0 0 02

1 0 0 03

Adjacency 
Matrix

0: 1, 3
1: 0
2:
3: 0

Adjacency
Lists

N: the number 
of vertices.

5



2020-12-04 CS 311 Fall 2020

Review
Introduction to Graphs [3/3]

When we analyze the efficiency of graph algorithms, we consider
both the number of vertices and the number of edges.
§ N = number of vertices
§ M = number of edges

When analyzing efficiency, we consider adjacency matrices & 
adjacency lists separately.

The total size of the input is:
§ For an adjacency matrix: N2. So Θ(N2).
§ For adjacency lists: N + 2M. So Θ(N + M).

Some particular algorithm might have order (say) Θ(N + M log N).

6



2020-12-04 CS 311 Fall 2020

Review
Graph Traversals [1/2]

To traverse a graph means to visit each vertex once.
Two kinds of graph traversals.

§ Depth-first search (DFS)
§ Breadth-first search (BFS)

DFS has natural formulations in recursive form and also in non-
recursive form, using a Stack.

If, in the non-recursive form of DFS, we turn the Stack into a 
Queue, we get a BFS algorithm.

All of these are Θ(N + M) when given adjacency lists and Θ(N2) 
when given an adjacency matrix. So their running time is of the 
same order as the total size of the input.

7



2020-12-04 CS 311 Fall 2020

Review
Graph Traversals [2/2]

A DFS and a BFS are illustrated for the graph below.

6

3

1

2

5

DFS: …

47

BFS: …

6

3

1

2

5

47

8



2020-12-04 CS 311 Fall 2020

Review
Spanning Trees — Introduction

A tree is a graph that:
§ Is connected (all one piece).
§ Has no cycles.

A spanning tree in a graph G is a tree that:
§ Includes only vertices and edges of G.
§ Includes all vertices of G.

Fact. Every connected graph has a spanning tree.

An important problem: given a weighted graph, find a minimum 
spanning tree—a spanning tree of minimum total weight.

There are several nice algorithms that solve this problem.

1

2

8
3

4
2

7
6
1

5

6

5

Disconnected
Graph

Connected
Graph

Here, “tree” 
does not mean 
“rooted tree”.

9



2020-12-04 CS 311 Fall 2020

Review
Spanning Trees — Greedy Methods

A greedy method is “shortsighted”. It proceeds in a series of 
choices, each based on what is known at the time. Choices are:
§ Feasible: each makes sense.
§ Locally optimal: best possible based on current information.
§ Irrevocable: once a choice is made, it is permanent.

Being greedy is usually not a good way to get correct answers.
However, in the cases when being greedy gives correct results, it 

tends to be very fast.

10



2020-12-04 CS 311 Fall 2020

Review
Spanning Trees — Prim’s Algorithm [1/4]

Prim’s Algorithm is a greedy algorithm to find a minimum 
spanning tree in a connected weighted graph.

Idea
§ One vertex is specified as start.
§ As the algorithm proceeds, we add edges to a tree. Using these 

edges, we are able to reach more and more vertices from start.
§ Procedure. Repeatedly add the lowest-weight edge from a reachable 

vertex to a non-reachable vertex, until all vertices are reachable.

1

2

8
3

4
2

7
6
1

5

6

5

11



2020-12-04 CS 311 Fall 2020

Review
Spanning Trees — Prim’s Algorithm [2/4]

Prim’s Algorithm
§ Given: Connected graph, weights on the edges; one vertex is start.
§ Returns: Edge set of a minimum spanning tree.
§ Procedure:

§ Mark all vertices as not-reachable.
§ Set edge set of tree to empty.
§ Mark start vertex as reachable.
§ Repeat while there exist not-reachable vertices:

§ Find lowest weight edge joining a reachable vertex to a not-reachable vertex.
§ Add this edge to the tree.
§ Mark the not-reachable endpoint of this edge as reachable.

§ Return edge set of tree.

1

2

8
3

4
2

7
6
1

5

6

5

It is not obvious that 
Prim’s Algorithm 
correctly finds a 

minimum spanning 
tree. But it does!

12



2020-12-04 CS 311 Fall 2020

Review
Spanning Trees — Prim’s Algorithm [3/4]

Finding the lowest-weight edge from reachable to not-reachable:
§ Use a Priority Queue holding edges, ordered by weight and 

implemented as a Minheap. So we do getFront & delete on the edge 
of least weight.

§ Insert edges that join reachable & not-reachable vertices: when 
marking a vertex as reachable, insert into the PQ all edges from this 
vertex to not-reachable neighbors.

§ When getting an edge from the PQ, check to be sure it still joins 
reachable & not-reachable vertices. If not, skip it.

Represent a weighted graph as usual + matrix of edge weights.

Easy optimization: stop when the tree has N–1 edges.

13



2020-12-04 CS 311 Fall 2020

Review
Spanning Trees — Prim’s Algorithm [4/4]

We looked at an implementation of Prim’s Algorithms that uses 
std::priority_queue to find the lowest-weight edge.

What is the order of our implementation of Prim’s Algorithm?
§ It does something with each vertex.
§ It does something with each edge.
§ The latter may involve insertion & deletion in a Binary Heap.

Result: Θ(N + M log M).
For a connected graph, we have M ≥ N – 1.
So: Θ(M log M).

Or: store vertices in the PQ instead of edges, and
implement the PQ using a Fibonacci Heap (which we will
not cover). This is more efficient for graphs with many edges.

See prim.cpp.

2

40

7

27

14 4

9 1611

Fibonacci Heap
(Minheap)

14



2020-12-04 CS 311 Fall 2020

Review
Spanning Trees — Kruskal’s Algorithm

Another greedy algorithm to find a minimum spanning tree: 
Kruskal’s Algorithm [J. Kruskal 1956].

Procedure
§ Set edge set of tree to empty.
§ Repeat:

§ Add the least-weight edge joining two vertices that cannot be reached 
from each other using edges added so far.

§ Return edge set of tree.

To implement Kruskal’s Algorithm well, we need an efficient way to 
check whether a vertex can be reached from another vertex.

We cover a solution to this problem soon!

1

2

8
3

4
2

7
6
1

5

6

5

15



Other Graph Topics

2020-12-04 CS 311 Fall 2020 16



Other Graph Topics
Shortest Path [1/3]

Shortest Path Problem. Given a weighted graph with two 
vertices specified, find the shortest path from one to the other 
(the path with the lowest total weight).

2020-12-04 CS 311 Fall 2020

6

7

5
3

2
2

5
4
1

7

1

2

17



Other Graph Topics
Shortest Path [2/3]

Dijkstra’s Algorithm [E. Dijkstra 1959]. Given a start vertex, this 
algorithm finds, for each other vertex in the weighted graph, the 
shortest path from start to that vertex.

Procedure:
§ Label each vertex. Start gets 0. Others get ∞.
§ Mark all vertices as unvisited.
§ Repeat:

§ Find the unvisited vertex with the smallest
label. Call it x.

§ Mark x as visited.
§ For each unvisited neighbor of x:

§ Let newLabel = (label of x) + (weight of edge from x to neighbor).
§ If newLabel < (label of neighbor), then set (label of neighbor) = newLabel.

§ Done. Meaning of each vertex label: length of shortest path from 
start to this vertex, or ∞ if there is no path.

2020-12-04 CS 311 Fall 2020

6

7

5
3

2
2

5
4
1

7

1

2

6

7

10

8

120
10

Vertex label = length of shortest path from 
start to this vertex that has been found so far.

18



Other Graph Topics
Shortest Path [3/3]

Efficiency issues for Dijkstra’s Algorithm are
similar to those for Prim’s Algorithm.

We put vertices in a Heap and allow for
decrease-key.

Then, for a connected graph, using a Binary Heap
gives Θ(M log N), while a Fibonacci Heap gives Θ(M + N log N), 
just as for Prim’s Algorithm.

2020-12-04 CS 311 Fall 2020

6

7

5
3

2
2

5
4
1

7

1

2

6

7

10

8

120
10

19



2020-12-04 CS 311 Fall 2020

Other Graph Topics
Union-Find [1/7]

Some graph operations do not require a fully general graph 
representation.

An example of this is given by the operations in ADT called Union-
Find (a.k.a. Find-Merge).

Data
§ A graph.

Operations
§ MakeSet. Create a new vertex.
§ Union. Given two vertices, add an edge

between them.
§ Find. Given a vertex, determine which

component (connected chunk) of the graph it lies in.

Using Find, we can 
determine whether there is 
a path joining two vertices: 
this is true if they lie in the 

same component.

The names of these 
operations should make 
more sense shortly.

20



2020-12-04 CS 311 Fall 2020

Other Graph Topics
Union-Find [2/7]

Union-Find operations:
§ MakeSet. Create a new vertex.
§ Union. Given two vertices, add an 

edge between them.
§ Find. Given a vertex, determine 

which component of the graph it
lies in.

But Union-Find is not really about 
graphs …

2

5

6 MakeSet
operations 
(1 .. 6)1

4

3

6

Union(2,5)

Union(2,4)

1

4

2

5

3

6

1

4

3

6

2

5

3

6

1

4

2

5

Union(1,4)

21



2020-12-04 CS 311 Fall 2020

Other Graph Topics 
Union-Find [3/7]

Union-Find is not really about graphs;
it is about blobs*.
§ Each vertex lies in some blob.
§ MakeSet creates a new single-

vertex blob.
§ Union merges the blobs containing 

two given vertices into one blob.
§ Find determines which blob a given 

vertex lies in.
Since we only care about blobs, we do 

not need to keep track of edges.
We must keep track of something—but 

what? We answer this shortly.

*Blobs are actually called sets.
Thus the names of the operations.

Union(2,5)

Union(2,4)

2

5

1

4

1

4

3

6

5

3

6

1

4

2

5

2

3

6

3

6

1

4

2

5

6 MakeSet
operations 
(1 .. 6)

Union(1,4)

22



2020-12-04 CS 311 Fall 2020

Other Graph Topics 
Union-Find [4/7]

Union-Find operations usually do not use a graph representation.
Rather, the are done on some kind of disjoint-set structure.

§ Also called a union-find structure or find-merge structure.
A commonly used—and very efficient—example is a Disjoint-Set 

Forest [B. Galler & M. Fischer 1964].
§ Node-based. Each node represents one vertex.
§ A set (blob) forms a rooted tree.
§ Each node has a pointer. This points to its

parent, or to itself if it is the root of a tree.
Doing the Union-Find Operations

§ MakeSet. Create a new node, pointing at itself.
§ Find. Start at the given vertex, and follow the pointer chain to the 

root. Return identifier for this root—perhaps its index in an array?
§ So the root—or its index—serves as the identifier for a set.

§ Union. Do a Find on each of the two given vertices. Point one root 
at the other, forming a single tree.

23



2020-12-04 CS 311 Fall 2020

Other Graph Topics 
Union-Find [5/7]

Two optimizations greatly speed up Union-
Find operations on a Disjoint-Set Forest.

Union by Rank. When doing a Union, if 
the two trees have different heights, 
then attach the tree with smaller
height to the root of the other tree.
§ To make this efficient, track the

height of each tree in its root.

Path Compression. After following a 
pointer chain—which happens during
a Find—point each node at the root.

Eventually

24



2020-12-04 CS 311 Fall 2020

Other Graph Topics 
Union-Find [6/7]

MakeSet. Create node 
pointing at itself.

Union. 2 Finds. Point 
root of small-height 
tree at other root.

Find. Follow pointer 
chain to the root. 
Point each vertex in 
chain at the root. 
Return the root.

1 2 3 4

4

21 3

Eventually

Union(2,5)

Union(2,4)

5 6

5 6

4

1 3 6

5

2

1

24

3

5

61

24

3

5

6

Logical StructureImplementation

5 6

2

5

1

4

1

4

3

6

2 3

1

4

3

6

2

5

3

6

1

4

2

5

6 MakeSet
operations 
(1 .. 6)

Union(1,4)

25



2020-12-04 CS 311 Fall 2020

Other Graph Topics 
Union-Find [7/7]

Amortized time per operation for a Disjoint-Set Forest, with the 
two optimizations discussed, is known to be O(α(n)), where α(n) 
is the extremely slow-growing inverse Ackermann function.
§ A web search finds info about this easily.

Thus: About as near to amortized constant time as one can get, 
without actually being amortized constant time.

Implementations of Kruskal’s Algorithm typically use a Disjoint-Set 
Forest.

26



2020-12-04 CS 311 Fall 2020

The Rest of the Course
Overview

Two Final Topics
§ External Data

§ Previously, we dealt only with data stored in memory.
§ Suppose, instead, that we wish to deal with data stored on an external 

device, accessed via a relatively slow connection and available in sizable 
chunks (data on a disk, for example).

§ How does this affect the design of algorithms and data structures?
§ Graph Algorithms

§ A graph models relationships between pairs
of objects.

§ This is a very general notion. Algorithms for
graphs often have very general applicability.

P

Drawing of 
a Graph

P

This usage of “graph” has 
nothing to do with the graph 
of a function. It is a different 

definition of the word.

DON
E

27



Course Wrap-Up

2020-12-04 CS 311 Fall 2020 28



2020-12-04 CS 311 Fall 2020

Course Wrap-Up
From the First Day of Class: Course Overview — Goals

Upon successful completion of CS 311, you should:
§ Have experience writing and documenting high-quality code.
§ Understand proper error handling, enabling software components to 

support robust, reliable applications.
§ Be able to perform basic analyses of algorithmic efficiency, including 

use of big-O and related notation.
§ Be familiar with various standard algorithms, including those for 

searching and sorting.
§ Understand what data abstraction is, and how it relates to software 

design.
§ Be familiar with standard container data structures, including 

implementations and relevant trade-offs.

29



2020-12-04 CS 311 Fall 2020

Course Wrap-Up
From the First Day of Class: Course Overview — Topics

The following topics will be covered, roughly in order:
§ Advanced C++
§ Software Engineering Concepts
§ Recursion
§ Searching
§ Algorithmic Efficiency
§ Sorting
§ Data Abstraction
§ Basic Abstract Data Types & Data Structures:

§ Smart Arrays & Strings
§ Linked Lists
§ Stacks & Queues
§ Trees (various kinds)
§ Priority Queues
§ Tables

§ Briefly: external data, graph algorithms.

Goal: Practical generic containers
A container is a data structure holding 
multiple items, usually all the same type.

A generic container is one that can hold 
objects of client-specified type.

DON
E

30



Course Wrap-Up
Things That Matter [1/3]

Scalability matters!

The big winners in the modern world are those who design and 
produce scalable systems.

Remember, we generally look for:
§ Constant or logarithmic time for single-item operations.
§ Linear or log-linear time (or faster) for whole-dataset operations.

Are we talking about worst-case behavior? Is average-case 
acceptable, with worst-case being slower? What about 
amortized time?

Answer. It depends on the requirements of the project.

We measure time by counting basic operations.
These operations may vary. It matters what we count!

2020-12-04 CS 311 Fall 2020 31



Course Wrap-Up
Things That Matter [2/3]

Trade-offs matter!

Why not just give everyone a quick-reference sheet listing the best 
solutions to various problems?

Because many problems have no single best overall solution.
Understand trade-offs; find solutions that meet your needs.

Some examples from this semester:
§ Finding: Sequential Search vs. Binary Search.
§ Sequences: Array vs. Linked List vs. Sequence in a Table, etc.
§ Finding again: Binary Search on sorted array vs. Table.
§ Tables: Red-Black Tree vs. Hash Table vs. Prefix Tree.

§ And then there is the effect of slow connections (external methods).
§ Taking time (& money!) to optimize vs. slow code.
§ Using already written data structure/algorithm vs. writing our own.

2020-12-04 CS 311 Fall 2020 32



Course Wrap-Up
Things That Matter [3/3]

Error handling, robustness, and reliability matter!

Software systems manage sensitive personal data, financial 
transactions, military equipment, and medical devices. They 
drive cars, planes, trains, and ships. They run security systems.

The days when we could get away with saying, “Aw, that hardly 
ever happens; don’t worry about it,” are largely gone.
§ Responsibilities like those above require very low failure rates.
§ The increasing size of systems can make “rare” events common.
§ Thanks to the Web, malicious users are everywhere.

But some projects can get away with ignoring some of these ideas.
Understand the needs of the project you are working on!

2020-12-04 CS 311 Fall 2020 33



Course Wrap-Up
THE END

2020-12-04 CS 311 Fall 2020

Is that it? Yup.

34


