
Hash Tables
Prefix Trees

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, November 18, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

continued

Review

2020-11-18 CS 311 Fall 2020 2

2020-11-18 CS 311 Fall 2020

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:
§ Store: A collection of data items, all of the same type.
§ Operations:

§ Access items [single item: retrieve/find, all items: traverse].
§ Add new item [insert].
§ Eliminate existing item [delete].

§ Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.

3

Unit Overview
Tables & Priority Queues

Major Topics
§ Introduction to Tables
§ Priority Queues
§ Binary Heap Algorithms
§ Heaps & Priority Queues in the C++ STL
§ 2-3 Trees
§ Other self-balancing search trees
§ Hash Tables
§ Prefix Trees
§ Tables in the C++ STL & Elsewhere

2020-11-18 CS 311 Fall 2020

Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Lots of lousy implementations

A special-purpose
implementation: “the Radix
Sort of Table implementations”

P
P
P
P
P
P

(part)

4

2020-11-18 CS 311 Fall 2020

Review
Introduction to Tables

A Table allows for arbitrary key-based look-up.
Three single-item operations: retrieve, insert, delete by key.
A Table implementation typically holds key-value pairs.

Three ideas for efficient implementations:
1. Restricted Table → Priority Queues
2. Keep a tree balanced → Self-balancing search trees
3. Magic functions → Hash Tables

(9, Ann)

(4, Peg) (12, Ed)

(12, Ed) (4, Peg) (9, Ann)

(4, Peg) (9, Ann) (12, Ed)

Inefficient ImplementationsTable

Key Value

12 Ed

04 Peg

09 Ann

5

2020-11-18 CS 311 Fall 2020

Overview of Advanced Table Implementations

We cover the following advanced Table implementations.
§ Self-balancing search trees

§ To make things easier, allow more children (?):
§ 2-3 Tree

§ Up to 3 children
§ 2-3-4 Tree

§ Up to 4 children
§ Red-Black Tree

§ Binary Tree representation of a 2-3-4 Tree
§ Or back up and try for a strongly balanced

Binary Search Tree again:
§ AVL Tree

§ Alternatively, forget about trees entirely:
§ Hash Table

§ Finally, “the Radix Sort of Table implementations”:
§ Prefix Tree

Idea #2:
Keep a tree balanced

Idea #3:
Magic functions

Later, we will cover other
self-balancing search

trees: B-Trees, B+ Trees.

P

P

P

P

(part)

6

2020-11-18 CS 311 Fall 2020

Review
2-3 Trees, Other Self-Balancing Search Trees

The self-balancing search trees include 2-3 Trees, 2-3-4 Trees,
Red-Black Trees, AVL Trees, and other kinds.
§ All are generalizations of Binary Search Trees.
§ The ones we covered all allow for Table implementations with

logarithmic-time retrieve/insert/delete by key.

Generally, the Red-Black Tree is agreed to have the best overall
performance, for in-memory datasets with many insert & delete
operations, when worst-case performance is important.

202 4

7 18

8 12 20

4 18

2 7 8 12

7 12

2 8

4 20

1812 ←

18 →7 ←

2 → 20 =

4 =

8 =

2-3 Tree
(and 2-3-4 Tree) 2-3-4 Tree

AVL Tree
Red-Black

Tree

7

2020-11-18 CS 311 Fall 2020

Review
Hash Tables [1/4]

A Hash Table is a Table implementation that stores key-value
pairs in an unsorted array. Array indices are slots.
§ A key’s slot is computed using a hash function.
§ An array location can be EMPTY.

Collision: when two items with unequal keys get the same slot.
Collisions are generally an unavoidable problem, because there
are often far more possible keys than slots.

Needed
§ Hash function (typically separate from the Hash Table

implementation).
§ Collision-resolution method.

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

hash
functionkey hash code modulo

array size

EMPTY

slot (array index)

Or just keys, if
there are no
associated values.

8

Review
Hash Tables [2/4]

A hash function must:
§ Take a key and return a nonnegative integer (hash code).
§ Be deterministic: the output depends only on

the input. Passing the same key multiple times
results in the same hash code every time.

§ Return the same hash code for keys that
compare equal (==).

A good hash function:
§ Is fast.
§ Spreads out its results evenly over the possible output values.
§ Turns patterns in its input into unpatterned output.

2020-11-18 CS 311 Fall 2020

Consistency
requirement
mentioned
previously

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

hash
functionkey hash code modulo

array size

EMPTY

slot (array index)

9

2020-11-18 CS 311 Fall 2020

Review
Hash Tables [3/4]

Collision resolution methods, category #1: Closed Hashing
§ Each array item holds one key-value pair, or a mark indicating

EMPTY or DELETED.
§ To find a key, begin at the slot given by the hash function, and

probe in a sequence of slots: the probe sequence. End when
desired key or EMPTY slot is found.

Some probe sequences (t is initial slot given by hash function):
§ Linear probing: t, t+1, t+2, t+3, etc.

§ Tends to form clusters, which slow things down. L

§ Quadratic probing: t, t+12, t+22, t+32, etc.
§ Double hashing: Base probe sequence on a 2nd hash function.

Cluster

EMPTY Non-empty:
holds a stored key-value pairDELETED

10

2020-11-18 CS 311 Fall 2020

Review
Hash Tables [4/4]

Collision resolution methods, category #2: Open Hashing
§ Each array item holds a data structure (a bucket) that can store

multiple key-value pairs.
§ Buckets are virtually always Singly Linked Lists.
§ To find a key, determine which bucket to look in based on the hash

code. Do a Sequential Search in that bucket.

11

Hash Tables

2020-11-18 CS 311 Fall 2020

continued

12

2020-11-18 CS 311 Fall 2020

Hash Tables
Rehashing

All Hash Table implementations that allow insertion will suffer poor
performance when the data structure gets too full.

Q. What do we do about this?
A. When the number of items gets too high, we remake the Hash

Table, doing a reallocate-and-copy to a larger array—as we did
with resizable smart arrays. This is called rehashing.

Rehashing is time-consuming. We need to traverse the entire Hash
Table, calling the hash function for every key present.

This is one of the downsides of Hash Tables.

Two Questions
1. How do we decide when to do rehashing?
2. How does periodic rehashing affect Hash Table performance?

We look at these after discussing basic Hash Table efficiency.

13

2020-11-18 CS 311 Fall 2020

Hash Tables
Efficiency — Introduction

How efficient are Hash Tables?
Let’s look at Hash Tables where duplicate keys are not allowed:

§ A Hash Table using open hashing, in which buckets are Linked Lists.
§ A Hash Table using closed hashing.

For now, assume there is no rehashing—a dumb assumption, but
only a temporary one.

The time taken for retrieve, insert—assuming no rehashing—or
delete is essentially the time required to search by key (right?).

So: how fast can we do a search by key?

Open Hashing Closed Hashing

14

2020-11-18 CS 311 Fall 2020

Hash Tables
Efficiency — Worst Case

In the worst case, every item inserted gets the same slot.

With open hashing, this turns our Table into a Linked List.
So a search is linear-time.

With closed hashing, a search may require probing every
stored item. Again, linear-time.

Conclusion. In a Hash Table, search by key is linear-time.
Thus, retrieve, insert, and delete are linear-time (worst case!).

Now, what about the average case?
15

2020-11-18 CS 311 Fall 2020

Hash Tables
Efficiency — Load Factor [1/2]

Average-case performance of a Hash Table can be analyzed based
on its load factor: α = (# of keys present) / (# of slots).

Answers on next slide.

Lower-case
Greek letter alpha

Open Hashing Closed Hashing
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 89 10 9 10

α =
#keys
#slots

α =
#keys
#slots??????

16

2020-11-18 CS 311 Fall 2020

Hash Tables
Efficiency — Load Factor [2/2]

Average-case performance of a Hash Table can be analyzed based
on its load factor: α = (# of keys present) / (# of slots).

Answers

A Hash Table implementation keeps its load factor small.

In the following slides, we assume α is significantly less than 1. For
example, we might require that α < 2/3.

Lower-case
Greek letter alpha

Open Hashing Closed Hashing
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 89 10 9 10

α =
#keys
#slots

=
6
11

≈ 0.55 α =
#keys
#slots

=
5
11

≈ 0.45

17

2020-11-18 CS 311 Fall 2020

Hash Tables
Efficiency — Average Case: Open Hashing

Consider open hashing. Again, buckets = Linked Lists, no duplicate
keys, α significantly less than 1.

Search worst case: linear time.

Search average case:
§ The average number of items in a bucket is α (the load factor).
§ Thus, the average number of comparisons required for a search

resulting in NOT FOUND is α.
§ The average number of comparisons required for a search

resulting in FOUND is approximately 1 + α/2.
§ Average search looks at item found + half of other items in bucket:

1 +
1
2
⋅
𝑛 − 1
𝑏

= 1 +
⁄𝑛 𝑏
2

−
1
2𝑏

≈ 1 +
α
2

Very
small

If α < 1, then these
are less than 1.5.
That’s fast!

α

18

2020-11-18 CS 311 Fall 2020

Hash Tables
Efficiency — Average Case: Closed Hashing

Consider closed hashing. Again, no duplicate keys, α significantly
less than 1.

Search worst case: linear time.

Search average case:
§ Comparisons for linear probing:

§ NOT FOUND: (1/2)[1+1/(1–α)]2.
§ FOUND: (1/2)[1+1/(1–α)].

§ Comparisons for quadratic probing:
§ NOT FOUND: 1/(1–α).
§ FOUND: –ln(1–α)/ α.

Important to know:
§ Larger α means a slower average case for search.
§ Requiring α < r, for r a fixed number between 0 and 1 (so r ≠ 1),

gives a fast constant-time average case for search.

The analysis is complicated.
It actually took several years
to be properly figured out.
We will not give details.

19

2020-11-18 CS 311 Fall 2020

Hash Tables
Efficiency — With Rehashing

Summary, so far. For both open & closed hashing:
§ Worst-case performance for retrieve, insert, delete: linear time.
§ Average-case performance for retrieve, delete: constant time. Also

for insert—not counting the time required for rehashing.
But of course we will need to do rehashing occasionally.

1. How do we decide when to do rehashing?
§ Primary trigger for rehashing: the load factor becomes too large.

2. How does periodic rehashing affect Hash Table performance?
§ The effect of rehashing on Hash-Table efficiency is similar to that of

reallocate-and-copy on a resizable array. Again, when we increase
the array size, we need to increase it by a constant factor.

§ When we count rehashing, insert in a well written Hash Table will
have an average case of amortized constant time.

§ Note the double average! Average data & amortized time.

The Two Questions
from a few slides back

20

Hash Tables
Efficiency — Comparison

Efficiency Comparison (duplicate keys not allowed)

*Priority Queue retrieve & delete are not Table operations in full generality. Only
the item with the highest priority (key) can be retrieved/deleted.

**Logarithmic if enough memory is preallocated. Otherwise, occasional reallocate-
and-copy—linear time—may be required. Time per insert, averaged over many
consecutive inserts, will be logarithmic. Thus, amortized logarithmic time (which
is not a term I expect you to know).

***Hash Table insert is constant-time only in a double average sense: averaged
both over all possible inputs and over a large number of consecutive inserts.

2020-11-18 CS 311 Fall 2020

Priority Queue
using Heap

Self-Balancing
Search Tree

Hash Table:
worst case

Hash Table:
average case

Retrieve Constant* Logarithmic Linear Constant
Insert Amortized**

logarithmic
Logarithmic Linear Amortized

constant***
Delete Logarithmic* Logarithmic Linear Constant

Idea #1 Idea #2 Idea #3

21

Hash Tables
Efficiency — Issues

Hash Tables generally have excellent average-case performance,
but poor worst-case performance.

Can a malicious user force poor Hash Table performance?
§ Sometimes. For many applications this matters little, but for others

it can matter a great deal. This issue is something to keep in mind.
§ A cryptographic hash function is one that is extremely difficult to

reverse. This makes it hard to force poor performance. However,
cryptographic hash functions are time-consuming to compute, which
makes them unsuitable for most applications of Hash Tables.

Hash Tables are appropriate for many use cases
of Tables. But their worst-case performance
can be problematic in some contexts.

When using Hash Tables, do so intelligently.

2020-11-18 CS 311 Fall 2020

Don’t program
a pacemaker
in Python!

22

Prefix Trees

2020-11-18 CS 311 Fall 2020 23

Prefix Trees
Background

In a list of strings, there are often strings that start with the same
sequence of characters.

For example, in the list to the right, “dot”, “dote”,
and “doting” all begin with “dot…”.

Such strings are said to have a common prefix.

We will use string in a general sense, just as when
we discussed Radix Sort. A string is a sequence;
its entries will be called characters.
§ The words in the above list are strings of letters.
§ A nonnegative integer can be regarded as a string of digits.
§ Many kinds of data can be regarded as strings of bits (0s & 1s).

We look at a data structure that can be used to store a Table in
which the keys are such strings: a Prefix Tree.

2020-11-18 CS 311 Fall 2020

dig
dog
dot
dote
doting
eggs

24

Prefix Trees
Definition

A Prefix Tree (a.k.a. Trie) is a tree used
to implement a Table whose keys are
strings—in the general sense.
§ Each child is associated with a character.

A node has at most one child for each character.
§ A node has:

§ A Boolean—whether it represents a stored key.
§ Child pointers—one for each possible character.
§ The value associated with a key, if needed.

§ Duplicate keys are generally not allowed.
(But they can be faked; do you see how?)

Credit
§ René de la Briandais 1959, Edward Fredkin 1960.
§ “Trie” was coined by Fredkin.

2020-11-18 CS 311 Fall 2020

Nodes with dots represent
stored keys: dig, dog,
dot, dote, doting, eggs.

“Trie” for “reTRIEval”.
Some say “tree”.
Some say “try”.

I say “Prefix Tree”.

d e

i

g

o

tg

e i

g

n

g

g

s

Prefix
Tree

25

2020-11-18 CS 311 Fall 2020

Prefix Trees
Efficiency

For a Prefix Tree, retrieve, insert, and delete by key all take a
number of steps proportional to the length of a key.

If key length is considered fixed, then all are constant time!

But larger datasets tend to have longer keys.

If C is the size of the character set, and L is
the length of a key, then the number of
possible keys is K = CL.

Solve for L, and we get L = logC K.
The length of a key is logarithmic in the

number of possible keys.

So there is a hidden logarithm, just like Radix Sort.

d e

i

g

o

tg

e i

g

n

g

g

s

Prefix
Tree

26

2020-11-18 CS 311 Fall 2020

Prefix Trees
Thoughts

A Prefix Tree is a good basis for a Table implementation, when
keys are short-ish sequences of characters from a small-ish set.
§ Words in a dictionary, ZIP codes, etc.
§ Just like Radix Sort.

Prefix Trees are easy to implement well.
§ If you feel like writing a Red-Black Tree

to be used in production code, then you
might want to sit down until the feeling
goes away.

§ But if you feel like writing a Prefix Tree,
then go for it!

The idea behind Prefix Trees is also used in other
data structures. We will look at one of these later.

d e

i

g

o

tg

e i

g

n

g

g

s

Prefix
Tree

27

