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Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:
§ Store: A collection of data items, all of the same type.
§ Operations:

§ Access items [single item: retrieve/find, all items: traverse].
§ Add new item [insert].
§ Eliminate existing item [delete].

§ Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.
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Unit Overview
Tables & Priority Queues

Major Topics
§ Introduction to Tables
§ Priority Queues
§ Binary Heap Algorithms
§ Heaps & Priority Queues in the C++ STL
§ 2-3 Trees
§ Other self-balancing search trees
§ Hash Tables
§ Prefix Trees
§ Tables in the C++ STL & Elsewhere
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Idea #1: Restricted Table

Idea #2: Keep a tree balanced

Idea #3: Magic functions

Lots of lousy implementations

A special-purpose 
implementation: “the Radix 
Sort of Table implementations”

P
P
P
P
P
P

(part) 
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Review
Introduction to Tables

A Table allows for arbitrary key-based look-up.
Three single-item operations: retrieve, insert, delete by key.
A Table implementation typically holds key-value pairs.

Three ideas for efficient implementations:
1. Restricted Table → Priority Queues
2. Keep a tree balanced → Self-balancing search trees
3. Magic functions → Hash Tables

(9, Ann)

(4, Peg) (12, Ed)

(12, Ed) (4, Peg) (9, Ann)

(4, Peg) (9, Ann) (12, Ed)

Inefficient ImplementationsTable

Key Value

12 Ed

04 Peg

09 Ann
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Overview of Advanced Table Implementations

We cover the following advanced Table implementations.
§ Self-balancing search trees

§ To make things easier, allow more children (?):
§ 2-3 Tree

§ Up to 3 children
§ 2-3-4 Tree

§ Up to 4 children
§ Red-Black Tree

§ Binary Tree representation of a 2-3-4 Tree
§ Or back up and try for a strongly balanced

Binary Search Tree again:
§ AVL Tree

§ Alternatively, forget about trees entirely:
§ Hash Table

§ Finally, “the Radix Sort of Table implementations”:
§ Prefix Tree

Idea #2:
Keep a tree balanced

Idea #3:
Magic functions

Later, we will cover other 
self-balancing search 

trees: B-Trees, B+ Trees.

P

P

P

P

(part)
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Review
2-3 Trees, Other Self-Balancing Search Trees

The self-balancing search trees include 2-3 Trees, 2-3-4 Trees, 
Red-Black Trees, AVL Trees, and other kinds.
§ All are generalizations of Binary Search Trees.
§ The ones we covered all allow for Table implementations with 

logarithmic-time retrieve/insert/delete by key.

Generally, the Red-Black Tree is agreed to have the best overall
performance, for in-memory datasets with many insert & delete 
operations, when worst-case performance is important.

202 4

7 18
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2-3 Tree
(and 2-3-4 Tree) 2-3-4 Tree

AVL Tree
Red-Black

Tree
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Review
Hash Tables [1/4]

A Hash Table is a Table implementation that stores key-value 
pairs in an unsorted array. Array indices are slots.
§ A key’s slot is computed using a hash function.
§ An array location can be EMPTY.

Collision: when two items with unequal keys get the same slot. 
Collisions are generally an unavoidable problem, because there 
are often far more possible keys than slots.

Needed
§ Hash function (typically separate from the Hash Table 

implementation).
§ Collision-resolution method.

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

hash
functionkey hash code modulo 

array size

EMPTY

slot (array index)

Or just keys, if 
there are no 
associated values.

8



Review
Hash Tables [2/4]

A hash function must:
§ Take a key and return a nonnegative integer (hash code).
§ Be deterministic: the output depends only on

the input. Passing the same key multiple times
results in the same hash code every time.

§ Return the same hash code for keys that
compare equal (==).

A good hash function:
§ Is fast.
§ Spreads out its results evenly over the possible output values.
§ Turns patterns in its input into unpatterned output.
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Consistency 
requirement 
mentioned 
previously

(key, val) EMPTY (key, val) (key, val) EMPTY (key, val)(key, val)

hash
functionkey hash code modulo 

array size

EMPTY

slot (array index)
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Review
Hash Tables [3/4]

Collision resolution methods, category #1: Closed Hashing
§ Each array item holds one key-value pair, or a mark indicating 

EMPTY or DELETED.
§ To find a key, begin at the slot given by the hash function, and 

probe in a sequence of slots: the probe sequence. End when 
desired key or EMPTY slot is found.

Some probe sequences (t is initial slot given by hash function):
§ Linear probing: t, t+1, t+2, t+3, etc.

§ Tends to form clusters, which slow things down. L

§ Quadratic probing: t, t+12, t+22, t+32, etc.
§ Double hashing: Base probe sequence on a 2nd hash function.

Cluster

EMPTY Non-empty:
holds a stored key-value pairDELETED
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Review
Hash Tables [4/4]

Collision resolution methods, category #2: Open Hashing
§ Each array item holds a data structure (a bucket) that can store 

multiple key-value pairs.
§ Buckets are virtually always Singly Linked Lists.
§ To find a key, determine which bucket to look in based on the hash 

code. Do a Sequential Search in that bucket.
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continued
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Hash Tables
Rehashing

All Hash Table implementations that allow insertion will suffer poor 
performance when the data structure gets too full.

Q. What do we do about this?
A. When the number of items gets too high, we remake the Hash 

Table, doing a reallocate-and-copy to a larger array—as we did 
with resizable smart arrays. This is called rehashing.

Rehashing is time-consuming. We need to traverse the entire Hash 
Table, calling the hash function for every key present.

This is one of the downsides of Hash Tables.

Two Questions
1. How do we decide when to do rehashing?
2. How does periodic rehashing affect Hash Table performance?

We look at these after discussing basic Hash Table efficiency.
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Hash Tables
Efficiency — Introduction

How efficient are Hash Tables?
Let’s look at Hash Tables where duplicate keys are not allowed:

§ A Hash Table using open hashing, in which buckets are Linked Lists.
§ A Hash Table using closed hashing.

For now, assume there is no rehashing—a dumb assumption, but 
only a temporary one.

The time taken for retrieve, insert—assuming no rehashing—or 
delete is essentially the time required to search by key (right?).

So: how fast can we do a search by key?

Open Hashing Closed Hashing
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Hash Tables
Efficiency — Worst Case

In the worst case, every item inserted gets the same slot.

With open hashing, this turns our Table into a Linked List.
So a search is linear-time.

With closed hashing, a search may require probing every
stored item. Again, linear-time.

Conclusion. In a Hash Table, search by key is linear-time.
Thus, retrieve, insert, and delete are linear-time (worst case!).

Now, what about the average case?
15
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Hash Tables
Efficiency — Load Factor [1/2]

Average-case performance of a Hash Table can be analyzed based 
on its load factor: α = (# of keys present) / (# of slots).

Answers on next slide.

Lower-case
Greek letter alpha

Open Hashing Closed Hashing
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 89 10 9 10

α =
#keys
#slots

α =
#keys
#slots??????
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Hash Tables
Efficiency — Load Factor [2/2]

Average-case performance of a Hash Table can be analyzed based 
on its load factor: α = (# of keys present) / (# of slots).

Answers

A Hash Table implementation keeps its load factor small.

In the following slides, we assume α is significantly less than 1. For 
example, we might require that α < 2/3.

Lower-case
Greek letter alpha

Open Hashing Closed Hashing
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 89 10 9 10

α =
#keys
#slots

=
6
11

≈ 0.55 α =
#keys
#slots

=
5
11

≈ 0.45
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Hash Tables
Efficiency — Average Case: Open Hashing

Consider open hashing. Again, buckets = Linked Lists, no duplicate 
keys, α significantly less than 1.

Search worst case: linear time.

Search average case:
§ The average number of items in a bucket is α (the load factor).
§ Thus, the average number of comparisons required for a search 

resulting in NOT FOUND is α.
§ The average number of comparisons required for a search

resulting in FOUND is approximately 1 + α/2.
§ Average search looks at item found + half of other items in bucket:

1 +
1
2
⋅
𝑛 − 1
𝑏

= 1 +
⁄𝑛 𝑏
2

−
1
2𝑏

≈ 1 +
α
2

Very 
small

If α < 1, then these 
are less than 1.5. 
That’s fast!

α
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Hash Tables
Efficiency — Average Case: Closed Hashing

Consider closed hashing. Again, no duplicate keys, α significantly 
less than 1.

Search worst case: linear time.

Search average case:
§ Comparisons for linear probing:

§ NOT FOUND: (1/2)[1+1/(1–α)]2.
§ FOUND: (1/2)[1+1/(1–α)].

§ Comparisons for quadratic probing:
§ NOT FOUND: 1/(1–α).
§ FOUND: –ln(1–α)/ α.

Important to know:
§ Larger α means a slower average case for search.
§ Requiring α < r, for r a fixed number between 0 and 1 (so r ≠ 1), 

gives a fast constant-time average case for search.

The analysis is complicated. 
It actually took several years 
to be properly figured out. 
We will not give details.
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Hash Tables
Efficiency — With Rehashing

Summary, so far. For both open & closed hashing:
§ Worst-case performance for retrieve, insert, delete: linear time.
§ Average-case performance for retrieve, delete: constant time. Also 

for insert—not counting the time required for rehashing.
But of course we will need to do rehashing occasionally.

1. How do we decide when to do rehashing?
§ Primary trigger for rehashing: the load factor becomes too large.

2. How does periodic rehashing affect Hash Table performance?
§ The effect of rehashing on Hash-Table efficiency is similar to that of 

reallocate-and-copy on a resizable array. Again, when we increase 
the array size, we need to increase it by a constant factor.

§ When we count rehashing, insert in a well written Hash Table will 
have an average case of amortized constant time.

§ Note the double average! Average data & amortized time.

The Two Questions
from a few slides back
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Hash Tables
Efficiency — Comparison

Efficiency Comparison (duplicate keys not allowed)

*Priority Queue retrieve & delete are not Table operations in full generality. Only 
the item with the highest priority (key) can be retrieved/deleted.

**Logarithmic if enough memory is preallocated. Otherwise, occasional reallocate-
and-copy—linear time—may be required. Time per insert, averaged over many 
consecutive inserts, will be logarithmic. Thus, amortized logarithmic time (which 
is not a term I expect you to know).

***Hash Table insert is constant-time only in a double average sense: averaged 
both over all possible inputs and over a large number of consecutive inserts.
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Priority Queue
using Heap

Self-Balancing 
Search Tree

Hash Table:
worst case

Hash Table:
average case

Retrieve Constant* Logarithmic Linear Constant
Insert Amortized**

logarithmic
Logarithmic Linear Amortized

constant***
Delete Logarithmic* Logarithmic Linear Constant

Idea #1 Idea #2 Idea #3
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Hash Tables
Efficiency — Issues

Hash Tables generally have excellent average-case performance, 
but poor worst-case performance.

Can a malicious user force poor Hash Table performance?
§ Sometimes. For many applications this matters little, but for others 

it can matter a great deal. This issue is something to keep in mind.
§ A cryptographic hash function is one that is extremely difficult to 

reverse. This makes it hard to force poor performance. However, 
cryptographic hash functions are time-consuming to compute, which 
makes them unsuitable for most applications of Hash Tables.

Hash Tables are appropriate for many use cases
of Tables. But their worst-case performance
can be problematic in some contexts.

When using Hash Tables, do so intelligently.
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Don’t program 
a pacemaker 
in Python!
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Prefix Trees
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Prefix Trees
Background

In a list of strings, there are often strings that start with the same 
sequence of characters.

For example, in the list to the right, “dot”, “dote”,
and “doting” all begin with “dot…”.

Such strings are said to have a common prefix.

We will use string in a general sense, just as when
we discussed Radix Sort. A string is a sequence;
its entries will be called characters.
§ The words in the above list are strings of letters.
§ A nonnegative integer can be regarded as a string of digits.
§ Many kinds of data can be regarded as strings of bits (0s & 1s).

We look at a data structure that can be used to store a Table in 
which the keys are such strings: a Prefix Tree.
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dig
dog
dot
dote
doting
eggs
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Prefix Trees
Definition

A Prefix Tree (a.k.a. Trie) is a tree used
to implement a Table whose keys are
strings—in the general sense.
§ Each child is associated with a character.

A node has at most one child for each character.
§ A node has:

§ A Boolean—whether it represents a stored key.
§ Child pointers—one for each possible character.
§ The value associated with a key, if needed.

§ Duplicate keys are generally not allowed.
(But they can be faked; do you see how?)

Credit
§ René de la Briandais 1959, Edward Fredkin 1960.
§ “Trie” was coined by Fredkin.
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Nodes with dots represent 
stored keys: dig, dog, 
dot, dote, doting, eggs.

“Trie” for “reTRIEval”. 
Some say “tree”.
Some say “try”.

I say “Prefix Tree”.

d e

i

g

o
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g

n

g

g

s

Prefix 
Tree
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Prefix Trees
Efficiency

For a Prefix Tree, retrieve, insert, and delete by key all take a 
number of steps proportional to the length of a key.

If key length is considered fixed, then all are constant time! 

But larger datasets tend to have longer keys.

If C is the size of the character set, and L is
the length of a key, then the number of
possible keys is K = CL.

Solve for L, and we get L = logC K.
The length of a key is logarithmic in the

number of possible keys. 

So there is a hidden logarithm, just like Radix Sort.
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Prefix Trees
Thoughts

A Prefix Tree is a good basis for a Table implementation, when 
keys are short-ish sequences of characters from a small-ish set.
§ Words in a dictionary, ZIP codes, etc.
§ Just like Radix Sort.

Prefix Trees are easy to implement well.
§ If you feel like writing a Red-Black Tree

to be used in production code, then you
might want to sit down until the feeling
goes away.

§ But if you feel like writing a Prefix Tree,
then go for it!

The idea behind Prefix Trees is also used in other
data structures. We will look at one of these later.
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