
Binary Trees
Binary Search Trees

CS 311 Data Structures and Algorithms
Lecture Slides
Monday, November 2, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

Review

2020-11-02 CS 311 Fall 2020 2

2020-11-02 CS 311 Fall 2020

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:
§ Store: A collection of data items, all of the same type.
§ Operations:

§ Access items [single item: retrieve/find, all items: traverse].
§ Add new item [insert].
§ Eliminate existing item [delete].

§ Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.

3

2020-11-02 CS 311 Fall 2020

Unit Overview
Data Handling & Sequences

Major Topics
§ Data abstraction
§ Introduction to Sequences
§ Interface for a smart array
§ Basic array implementation
§ Exception safety
§ Allocation & efficiency
§ Generic containers
§ Node-based structures
§ More on Linked Lists
§ Sequences in the C++ STL
§ Stacks
§ Queues

P
P

Smart Arrays

Linked Lists

P
P
P
P
P

P
P
P
P
P

DON
E

4

2020-11-02 CS 311 Fall 2020

Review
Stacks

Stack: another container ADT.
Restricted version of Sequence:
Last-In-First-Out (LIFO).

Three primary operations:
§ getTop
§ push
§ pop

A Stack can be implemented simply
as a wrapper around some
existing Sequence type.

The STL has std::stack—a
container adapter. You can
choose the container. Default:
std::deque.

1. Start:
empty Stack.

2. Push 2.

3. Push 7.

4. Pop.

5. Pop.
Stack is empty again.

6. Push 5.

2

2
7

5

2

5

2020-11-02 CS 311 Fall 2020

Review
Queues [1/2]

Queue: another container ADT.
Restricted version of Sequence:
First-In-First-Out (FIFO).

Three primary operations:
§ getFront
§ enqueue
§ dequeue

A Queue can be implemented:
§ As a wrapper around an

appropriate Sequence type.
§ Using a circular buffer.

The STL has std::queue—a
container adapter. You can
choose the container. Default:
std::deque.

1. Start:
Empty Queue.

2. Enqueue 2.

3. Enqueue 7.

4. Dequeue.

5. Dequeue.
Empty again.

6. Enqueue 5.

2
F B

F B

7
F

2

7
F B

B

F B

5
F B

6

2020-11-02 CS 311 Fall 2020

Review
Queues [2/2]

A circular buffer is an ordinary Sequence (probably an array)
where we think of the ends as being joined.

We can implement a Queue using a circular buffer with markers
indicating the front and back of the Queue.

If possible, when the Queue expands or contracts, we avoid
resizing the underlying Sequence, and merely move the
markers.

2 1 3 5 31 8
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

FB

015

78

114

69

213

510

312

411 F

B

2
1
3

5 3 1 8

Physical Structure

Logical Structure

7

2020-11-02 CS 311 Fall 2020

Unit Overview
The Basics of Trees

Major Topics
§ Introduction to Trees
§ Binary Trees
§ Binary Search Trees

P

8

2020-11-02 CS 311 Fall 2020

Review
Introduction to Trees [1/2]

A rooted tree is a tree with one vertex designated as the root.
§ When we draw a rooted tree, we usually place the root at the top.

Each non-root vertex hangs from some other vertex.

For most of the rest of the semester, we will use tree to mean
rooted tree. We will usually draw them as on the right, above.

root
root

root

root

9

2020-11-02 CS 311 Fall 2020

Review
Introduction to Trees [2/2]

Terminology for rooted trees:
§ Root
§ Leaf
§ Parent
§ Child
§ Sibling
§ Ancestor
§ Descendant
§ Level
§ Height
§ Subtree

§ The subtree rooted at vertex v
§ A subtree of vertex v

v

1

2

3

4

5

6

7

8

Know these!

10

Binary Trees

2020-11-02 CS 311 Fall 2020 11

Binary Trees
Overview

Next we look at a special kind of (rooted) tree: a Binary Tree.
We cover:

§ Definitions
§ Traversals
§ Implementation
§ Applications

Q. What is missing above?
A. “Binary Trees in the C++ STL”, because there are none.

§ That is, Binary Trees in full generality are not found in the STL
interface.

§ Binary Trees will certainly be used in any STL implementation.
§ The STL interface does include a special kind of Binary Tree called a

Binary Heap. We will cover Binary Heaps in our next unit.

2020-11-02 CS 311 Fall 2020 12

2020-11-02 CS 311 Fall 2020

Binary Trees
Definitions [1/2]

A Binary Tree consists of a set T of nodes so that
either:
§ T is empty (no nodes), or
§ T consists of a node r, the root, and two subtrees

of r, each of which is a Binary Tree:
§ the left subtree, and
§ the right subtree.

We make a strong distinction between left and
right subtrees. Sometimes we use them for
very different things.

A Binary Tree is empty if it has no nodes.
Note that, in a Binary Tree, the left and/or

right subtree of a vertex may be empty.

a

b

a

b

Different
Binary Trees.

Empty
Binary

Tree

13

Binary Trees
Definitions [2/2]

Full Binary Tree
§ Leaves all lie in the same level.
§ All other nodes have two children each.

Complete Binary Tree
§ All levels above the bottom are full.
§ Bottom level is filled left-to-right.
§ Importance. Nodes are added in a fixed

order. Has a useful array representation.
Strongly Balanced Binary Tree

§ For each node, the left and right subtrees
have heights that differ by at most 1.

§ Importance. Height of entire tree is small.
This can allow for fast operations.

Every full Binary Tree is complete.
Every complete Binary Tree is strongly balanced.
2020-11-02 CS 311 Fall 2020 14

Binary Trees
Traversals — Idea

To traverse a Binary Tree means to visit each node in some order.
Standard Binary Tree traversals: preorder, inorder, postorder. The

name tells where the root goes: before, between, after.
Preorder traversal:

§ Root.
§ Preorder traversal of left subtree.
§ Preorder traversal of right subtree.

Inorder traversal:
§ Inorder traversal of left subtree.
§ Root.
§ Inorder traversal of right subtree.

Postorder traversal.
§ Postorder traversal of left subtree.
§ Postorder traversal of right subtree.
§ Root.

2020-11-02 CS 311 Fall 2020

r

Left
subtree

Right
subtree

15

2020-11-02 CS 311 Fall 2020

Binary Trees
Traversals — Example

What are the preorder, inorder, and postorder traversals of the
Binary Tree shown below?

Preorder: 1 2 4 5 3

Inorder: 4 2 5 1 3

Postorder: 4 5 2 3 1

Root Preorder
of left

subtree

Preorder
of right
subtree

RootInorder
of left

subtree

Inorder
of right
subtree

RootPostorder
of left

subtree

Postorder
of right
subtree

1

2 3

4 5

List the data items
in the order in which

they are visited.

16

2020-11-02 CS 311 Fall 2020

Binary Trees
Traversals — A Trick

Given a drawing of a Binary Tree, trace a counter-clockwise path
around it from upper left to upper right. Hit
the left, bottom, and right sides of each node
when the path passes them.

The order in which the path hits the left side
of each node gives the preorder traversal.
§ 1 2 4 5 3

The order in which the path hits the
bottom side of each node gives
the inorder traversal.
§ 4 2 5 1 3

The order in which the path hits the right side of each node gives
the postorder traversal.
§ 4 5 2 3 1

1

2 3

4 5

17

2020-11-02 CS 311 Fall 2020

Binary Trees
Traversals — Try It! [1/2]

Write preorder, inorder, and postorder traversals of the Binary
Tree shown below.

Answers on next slide.

FC

A

J P Q

18

2020-11-02 CS 311 Fall 2020

Binary Trees
Traversals — Try It! [2/2]

Write preorder, inorder, and postorder traversals of the Binary
Tree shown below.

Answers
Preorder: A C J F P Q
Inorder: C J A P F Q
Postorder: J C P Q F A

FC

A

J P Q

19

Binary Trees
Traversals — Expressions

Consider the Binary Tree at right.
§ This is an abstract syntax tree of an expression

(see CS 331).
Postorder traversal: 3 6 + 2 7 – *

§ This is the RPN form of the expression.
Inorder traversal: 3 + 6 * 2 – 7

§ This looks like normal infix notation. However, as an expression, it
is not what we mean; there are problems with precedence.

§ Redo. Insert “(” before each subtree, and “)” after.
Result: (((3) + (6)) * ((2) – (7)))

Preorder traversal: * + 3 6 – 2 7
§ This is (non-reversed) Polish notation.
§ Now add parentheses & commas: *(+(3, 6), –(2, 7))
§ Thinking of “*”, “+”, and “–” as names of functions, we can see that

this is standard functional notation.
§ A more familiar looking form: times(plus(3, 6), minus(2, 7))

2020-11-02 CS 311 Fall 2020

–+

*

3 6 2 7

20

2020-11-02 CS 311 Fall 2020

Binary Trees
Implementation — Pointer-Based

A common way to implement a Binary Tree is to use separately
allocated nodes referred to by pointers—similar to our
implementation of a Linked List.
§ Each node has a data item and two child pointers: left & right.
§ A pointer is null if there is no child.

In some cases, each non-root node
might keep a pointer to its parent.
§ This would allow some operations

to be much quicker.
§ When do we do this? When it helps.

That is, when the benefit gained by
speeding up certain operations exceeds the cost of maintaining the
additional pointer. This would depend on the purpose of the tree.

3

21

2 527

1

head

3

21

Binary Trees
Implementation — Array-Based Complete [1/2]

A complete Binary Tree can be stored efficiently in an array.
§ Put the root, if any, at index 0. Other items follow in left-to-right,

then top-to-bottom order.

We only store:
§ Array holding data items.
§ Tree size (number of items).

This greatly limits the operations available, since we must preserve
the property of being complete.

A Binary Heap—covered later—is implemented using this idea.

2020-11-02 CS 311 Fall 2020

0 10 20 30 40 50 60 70 80 90

Logical Structure
Physical Structure

0

10 20

70 80

30

90

40 50 60

No pointers required!

22

2020-11-02 CS 311 Fall 2020

Binary Trees
Implementation — Array-Based Complete [2/2]

Without pointers, how do we move around in the tree?
§ The root, if any, is at index 0.

§ The root exists if size > 0, that is, if the tree is nonempty.
§ The left child of node k is at index 2k + 1.

§ The left child exists if 2k + 1 < size.
§ The right child of node k is at index 2k + 2.

§ The right child exists if 2k + 2 < size.
§ The parent of node k is at index (k – 1)/2 [integer division].

§ The parent exists if k > 0.

0 10 20 30 40 50 60 70 80 90

Logical Structure
Physical Structure

0

10 20

70 80

30

90

40 50 60

23

2020-11-02 CS 311 Fall 2020

Binary Trees
Applications — Representing General Trees

We can represent any tree using a Binary Tree.
§ The left child of a node is its first child in the general tree.
§ The right child of a node is its next sibling in the general tree.

This makes the children of each node into a Linked List, with all the
associated advantages & disadvantages.

1

5 3

1 1 7 8 9 4 5

4 0 9 2 0 6

General Tree Binary-Tree
Representation

Left child

Right child

4 0 9 2 0 6

1 1 7 8 9 4 5

5 3

1

24

2020-11-02 CS 311 Fall 2020

Binary Trees
Applications — Recursive Lists

Binary Trees with data only in the leaves can represent recursive
lists: lists whose items may be lists.

Example. The list (1 (2 3 4) 5 6 (7)) is
represented by the tree shown. Its items:
§ 1
§ the list (2 3 4)
§ 5
§ 6
§ the list (7)

A node with no data represents a nonempty list.
§ Its left child represents the first item in this list.
§ If there are more items, then the right child represents

a list of these.
Binary Trees used in this way form the primary data structure in

the Lisp family of programming languages.

1

2

3

4

5

6

7

25

Binary Search Trees

2020-11-02 CS 311 Fall 2020 26

2020-11-02 CS 311 Fall 2020

Binary Search Trees
What a Binary Search Tree Is — Definition

Another application of Binary Trees is our next topic:
Binary Search Trees.

A Binary Search Tree is a Binary Tree in
which each node contains a single data
item, which includes a key, and the keys
have the following order relationship.
§ All keys in a node’s left subtree

are ≤ the node’s key.
§ All keys in a node’s right subtree

are ≥ the node’s key.
§ In other words, an inorder

traversal gives the keys in sorted
order.

A Binary Search Tree is a kind of
sorted container. Other kinds
include arrays & Linked Lists that are kept sorted.

Items ≤ x Items ≥ x

Must be ≤ x

Must be ≥ x

x

27

Binary Search Trees
What a Binary Search Tree Is — ADT?

We might consider Binary Search Tree as an ADT.
§ When we insert a key, we do not get to choose

where it goes.
§ So we look up items by value, not by position.
§ Binary Search Tree, like SortedSequence, would

be a value-oriented ADT. The point is to make
keys easy to find.

§ Binary Tree, like Sequence (and Stack and Queue),
would be a position-oriented ADT.

Like SortedSequence, Binary Search Tree is inadequate as a value-
oriented ADT. Both constrain the form of data in ways that are
irrelevant to its use.

2020-11-02 CS 311 Fall 2020

Position-Oriented ADT
Corresponding

Value-Oriented ADT
Sequence SortedSequence
Binary Tree Binary Search Tree

13

16

30

42

25

2822

10

4

20

28

2020-11-02 CS 311 Fall 2020

Binary Search Trees
Operations — Introduction

What operations do we perform on a Binary Search Tree?
Primarily those involving key-based access with arbitrary keys:

traverse, retrieve, insert, delete.

We already know how to traverse a BST: do an inorder traversal
exactly as for a Binary Tree.

We have not covered the three primary single-item operations:
§ Retrieve
§ Insert
§ Delete

These three can take advantage of the BST order property. When
altering a BST, they must also maintain this property.

We now look at algorithms to implement these operations.

29

Binary Search Trees
Operations — Retrieve

To retrieve a value in a Binary Search Tree, begin at the root and
repeatedly follow left or right child pointers, depending on how
the search key compares to the key in each node.

For example, retrieve key 20 in the tree shown:
§ 20 > 10 → right.
§ 20 > 16 → right.
§ 20 < 30 → left.
§ 20 = 20 → FOUND.

A given key may not lie in the tree. Stop if we
find an empty spot where the key should go.

Retrieve key 18 in the same tree:
§ 18 > 10 → right.
§ 18 > 16 → right.
§ 18 < 30 → left.
§ 18 < 20 → left.
§ No left child → NOT FOUND.

2020-11-02 CS 311 Fall 2020

13

16

30

42

25

2822

10

4

20

30

2020-11-02 CS 311 Fall 2020

Binary Search Trees
Operations — Insert

To insert a value with a given key:
§ Find where the key should go (do a search—much like retrieve).
§ Put the data there.

For example, we just found where 18 should go. Insert it.
The above works—unless the search finds an equivalent key. In

that case, our action depends on the
specification of the BST.
§ We could add a new value having

a key equivalent to an existing key.
§ Result: multiple equivalent keys.

§ Or we could replace the existing value
with the given value.

§ Or we could leave the tree unchanged.
§ If the last option is taken, then we may

wish to signal an error condition.

13

16

30

42

25

2822

10

4

18

20

Not just for Binary Search Trees! These are always the
options when inserting a duplicate key into an associative dataset.

31

Binary Search Trees
TO BE CONTINUED …

Binary Search Trees will be continued next time.

2020-11-02 CS 311 Fall 2020 32

