
Node-Based Structures
More on Linked Lists

CS 311 Data Structures and Algorithms
Lecture Slides
Friday, October 23, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

Review

2020-10-23 CS 311 Fall 2020 2

2020-10-23 CS 311 Fall 2020

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:
§ Store: A collection of data items, all of the same type.
§ Operations:

§ Access items [single item: retrieve/find, all items: traverse].
§ Add new item [insert].
§ Eliminate existing item [delete].

§ Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.

3

2020-10-23 CS 311 Fall 2020

Unit Overview
Data Handling & Sequences

Major Topics
§ Data abstraction
§ Introduction to Sequences
§ Interface for a smart array
§ Basic array implementation
§ Exception safety
§ Allocation & efficiency
§ Generic containers
§ Node-based structures
§ More on Linked Lists
§ Sequences in the C++ STL
§ Stacks
§ Queues

P
P

Smart Arrays

Linked Lists

P
P
P
P
P

4

Review
Allocation & Efficiency [1/2]

Originally, our resizable array class had two data members:
§ Size
§ Pointer to array

This design is inappropriate for a resizable array. It cannot keep
track of the amount of extra allocated space, if any. Thus, it
must do a reallocate-and-copy every time it is resized larger.

The fix is to add an additional data member to hold the capacity:
the amount of allocated space.

When this is done, the size is still the space used by the client’s
dataset, but it may be smaller than the capacity.

2020-10-23 CS 311 Fall 2020

0 1 2 3 4 5

Client’s data (size = 6)

Our allocated space (capacity = 9)

5

Review
Allocation & Efficiency [2/2]

An operation is amortized constant-time if
k consecutive operations require O(k) time.
§ Thus, over many consecutive operations, the

operation averages constant-time.
§ Not the same as constant-time average case—which averages over

all possible inputs.
§ Amortized constant-time is not something we can compare with

(say) logarithmic time.

Insert-at-end for a well written smart array is amortized constant-
time:
§ Store both currently used size and allocated capacity.
§ When space runs out, reallocate-and-copy with capacity increased

by a constant factor (doubled, for example).
Note. Insert-at-end is still linear time!

2020-10-23 CS 311 Fall 2020

This is our last
efficiency-related

terminology.

6

Review
Generic Containers

When we write a generic container, our value
type is specified by the client code. Its
member functions may throw. We generally
have no idea how to handle these
exceptions. Only the client code knows.

A function that allows exceptions thrown by
client-provided code to propagate
unchanged to the caller, is said to be
exception neutral.

2020-10-23 CS 311 Fall 2020

Client code

Our package

Implementation
of template-

parameter type

calls

calls

This is our last
exception-related

terminology.

This code
might throw …

… and if it does, then
this code handles
the exception.

7

Node-Based Structures

2020-10-23 CS 311 Fall 2020 8

2020-10-23 CS 311 Fall 2020

Node-Based Structures
Introduction [1/3]

Our primary building block for data structures has been the array.

§ Items are stored in contiguous memory locations.
§ Look-up operations are usually very fast.
§ Operations that do rearrangement (insert, delete, etc.) can be slow.

Many data structures are, instead, built out of nodes.
§ A node is usually a small block of memory that is referenced via a

pointer, and which may reference other nodes via pointers.

§ Memory-management changes significantly.
§ To find a node, follow a chain of pointers. Look-up can be slow.
§ Operations that require rearrangement might be very fast.

9

2020-10-23 CS 311 Fall 2020

Node-Based Structures
Introduction [2/3]

When we draw pictures of node-based data structures, the
positions of nodes in the picture usually have nothing to do with
their positions in memory.

For example, if a structure is stored like this …

… then we might draw it like this:

Physical
Structure

Logical
Structure

10

2020-10-23 CS 311 Fall 2020

Node-Based Structures
Introduction [3/3]

Think of nodes as resources to be owned & managed.
§ Who owns them?

§ It is good to document ownership (here: in the class invariants).
§ Internal pointers in a node-based structure are typically owning

pointers.
§ A node is typically owned by the node that points to it.
§ A node’s destructor typically frees all nodes that it points to.

This can make destroying a node-based structure easy.
§ Each node is responsible for destroying the nodes it owns.
§ To destroy the whole structure, all we need to do is destroy the

nodes that are not owned by other nodes.
§ And there is often just one of these.

Handling ownership is particularly easy if we use smart pointers …

11

Node-Based Structures
Smart Pointers — Overview

In 2011, smart pointer class templates were added to the C++
Standard Library. These use RAII to handle ownership of
dynamic objects automatically.

std::unique_ptr<T> (<memory>)
§ One-owner-at-a-time ownership of a dynamic object of type T.
§ The destructor of an owning unique_ptr destroys the object

pointed to.
§ Movable but not copyable. Moving transfers ownership.

std::shared_ptr<T> (<memory>)
§ Allows shared ownership of a dynamic object of type T.
§ Uses a reference count. Destroys object when the count hits 0.

§ “The last one to leave turns out the lights.”
§ Copyable. Copying grants shared ownership.

2020-10-23 CS 311 Fall 2020 12

Node-Based Structures
Smart Pointers — Creation

A default-constructed smart pointer does not point to anything.

unique_ptr<Foo> unp;

We can pass a pointer returned by new to the constructor of a
unique_ptr/shared_ptr, which will then do the delete for us.

Foo * p = new Foo(5, "xy", 3.2); // Do not delete p
unique_ptr<Foo> unp(p); // unp does the delete

But there is a better way: call make_unique/make_shared, passing
constructor arguments.

auto unp = make_unique<Foo>(5, "xy", 3.2);
// Both new and delete are done for us

2020-10-23 CS 311 Fall 2020

Arguments
for Foo
constructor.

13

Node-Based Structures
Smart Pointers — Use like a Pointer

Dereference a unique_ptr/shared_ptr just like a regular pointer.

cout << *unp << endl;

The arrow operator is also available.

unp->bar(); // Member function of the referenced object

If you need a regular (non-smart) pointer to the object a
unique_ptr/shared_ptr points to, call member function get.

Foo * p = unp.get();
p->bar();

2020-10-23 CS 311 Fall 2020 14

Node-Based Structures
Smart Pointers — Empty

A unique_ptr/shared_ptr that does not point to anything is said
to be empty. This corresponds to a null pointer.

Test whether a smart pointer is empty by treating it like a bool.

if (unp) // Is unp nonempty (does it point to anything)?
{

unp->bar();
}

Member function reset relinquishes ownership early and makes
the smart pointer empty. If the referenced object had only one
owner, then it is destroyed.

unp.reset(); // Relinquish ownership of object;
// unp is now empty

2020-10-23 CS 311 Fall 2020

Similarly, “if (!unp)” checks whether unp is empty.

Unlike with a regular pointer, this test works on a
smart pointer that has not been set to a particular
value—including a default-constructed smart pointer.

15

Node-Based Structures
Smart Pointers — Transferring & Sharing Ownership

To transfer ownership, pass or return a unique_ptr by value. This
unique_ptr must be an Rvalue; std::move may be required.

unique_ptr<Foo> makeAFoo()
{

return make_unique<Foo>(5, "xy", 3.2);
}

auto unp = makeAFoo();

If we are not transferring ownership, then a unique_ptr should be
passed by reference or reference-to-const.

A shared_ptr may be passed by value arbitrarily. Passing by value
shares ownership.

2020-10-23 CS 311 Fall 2020

make_unique returns an
Rvalue, so we do not need
to use std::move here.

16

Node-Based Structures
Smart Pointers — Philosophy

Programmers have found that shared ownership is rarely needed.
It is true that, whenever you might use unique_ptr, it will also
work to use shared_ptr. On the other hand, using unique_ptr
helps the compiler find bugs for you (and it is more efficient!).

Suggestions
§ When you want a smart pointer, start by using unique_ptr and

make_unique.
§ Pass a smart pointer by reference or reference-to-const when you

do not want to transfer/share ownership.
§ If code does not compile because it tries to copy a unique_ptr:

§ If you want to transfer ownership, then you might simply need to wrap
the unique_ptr in std::move.

§ If you do not want to transfer ownership, then you can call get to obtain
a non-owning regular pointer and use that instead.

§ If it turns out that you really need shared ownership, then do a global
search/replace: unique → shared

2020-10-23 CS 311 Fall 2020 17

More on Linked Lists

2020-10-23 CS 311 Fall 2020 18

2020-10-23 CS 311 Fall 2020

More on Linked Lists
Refresher [1/2]

Earlier, we looked briefly at a simple node-based structure: the
Linked List (or Singly Linked List).
§ Like an array, a Linked List stores a sequence of data items.

§ A Linked List is made of nodes. Each has a single data item and a
pointer to the next node, or a null pointer at the end of the list.

§ These pointers are the only way to find the next item. Unlike with
an array, we cannot quickly find (say) the 100,000th item in a
Linked List. Nor can we quickly find the previous item.

§ A Linked List is a one-way sequential-access structure. So its
iterators are forward iterators, which have only the ++ operator.

513 3 5 2

Head
Null pointer

3 1 3 5 2Array

Linked
List

5

Nodes

19

2020-10-23 CS 311 Fall 2020

More on Linked Lists
Refresher [2/2]

Why not always use (smart) arrays?
One reason: Linked Lists support fast insertion.

Suppose we have a sequence 3, 1, 5, 3, 5, 2.
We wish to insert a 7 before the first 5.

With an array, we move all later items up.
With a Linked List, if we know the proper

location, insertion is very fast.

For long sequences, the
speed difference
can be huge.

513 3 5 2

3 1 3 5 25

3 1 3 5 257

513 3 5 2

7

Array

Linked
List

20

2020-10-23 CS 311 Fall 2020

More on Linked Lists
More Advantages [1/2]

With Linked Lists, we can also do a fast splice:

Note that, if we allow for efficient splicing, then we cannot
efficiently keep track of a Linked List’s size.

Before

After

213243 1 55 14

22215 16 3 23

213243 1 55 14

22215 16 3 23

21

2020-10-23 CS 311 Fall 2020

More on Linked Lists
More Advantages [2/2]

With Linked Lists, iterators, pointers, and references to items will
always stay valid and never change what they refer to, as long
as the Linked List exists—unless we remove or change the item
referenced.

513 4 5 2

53 4 5 2

Iterator

Iterator

53 4 5 2

7

Iterator

Remove

Insert

22

More on Linked Lists
Comparison with Arrays [1/4]

What is the order of each of the following when using (a) a smart-
array implementation of a Sequence, and (b) a Linked-List
implementation? Assume good design and good algorithms.
§ Look-up an item by index.
§ Search in a sorted Sequence.
§ Search in an unsorted Sequence.
§ Sort a Sequence.
§ Insert an item at a given position (“position”: think iterator)
§ Remove an item at a given position.
§ Splice part of one Sequence into another.
§ Insert item at the beginning of a Sequence.
§ Remove item at the beginning of a Sequence.
§ Insert item at the end of a Sequence.
§ Remove item at the end of a Sequence.
§ Traverse a Sequence (iterate through all items, in order).

What other issues arise when comparing the two data structures?
2020-10-23 CS 311 Fall 2020 23

2020-10-23 CS 311 Fall 2020

More on Linked Lists
Comparison with Arrays [2/4]

*For Singly Linked Lists,
insert/remove just after the
given position.
§ Doubly Linked Lists can help.

**O(1) if no reallocate-and-copy.
§ Pre-allocate to ensure this.

***For O(1), need a pointer to
end of list. Otherwise, O(n).
§ This can be tricky.
§ And, for remove @ end, it is

mostly impossible.
§ Doubly Linked Lists can help.

Smart Array Linked List

Look-up by index O(1) O(n)

Search sorted O(log n) O(n)

Search unsorted O(n) O(n)

Sort O(n log n) O(n log n)

Insert @ given pos O(n) O(1)*

Remove @ given pos O(n) O(1)*

Splice O(n) O(1)

Insert @ beginning O(n) O(1)

Remove @ beginning O(n) O(1)

Insert @ end O(n)**
amortized const

O(1) or O(n)***

Remove @ end O(1) O(1) or O(n)***

Traverse O(n) O(n)

Find faster
with an array

Rearrange faster
with a Linked List

24

2020-10-23 CS 311 Fall 2020

More on Linked Lists
Comparison with Arrays [3/4]

Other Issues
§ L Linked Lists use more memory.
§ L When order is the same, Linked Lists are almost always slower.
§ L Arrays keep consecutive items in nearby memory locations.

§ Many algorithms have the property that when they access a data item,
the following accesses are likely to be to the same or nearby items. This
property of an algorithm is called locality of reference.

§ Once a memory location is accessed, the CPU cache can prefetch
nearby memory locations. With an array, these are likely to hold nearby
data items.

§ Because of cache prefetching, an array can have a significant speed
advantage over a Linked List, when used with an algorithm that has
good locality of reference.

§ J With an array, iterators, pointers, and references to items can be
invalidated by reallocation. Also, insert/remove can change the
item they reference.

25

2020-10-23 CS 311 Fall 2020

More on Linked Lists
Comparison with Arrays [4/4]

A Moral for Our Story
§ Two kinds of design decisions affect the efficiency of code:

§ Deciding how to process data (algorithms).
§ Deciding how to store data (data structures).

The latter often has the greater impact.

Very rough guidelines:
§ Use arrays when we want fast look-up/search.
§ Use Linked Lists when we want fast insert & delete (by iterator).

What if I
want all of
those to be

fast?

Stick around
for the rest

of the
semester!

26

2020-10-23 CS 311 Fall 2020

More on Linked Lists
Doubly Linked Lists [1/3]

We have been discussing the Singly Linked List.

Recall: in a Doubly Linked List, each node has two pointers, next
node (null at the end) and previous node (null at the beginning).

A Doubly Linked List typically has an end-of-list pointer. This can
be efficiently maintained, resulting in constant-time insert and
remove at the end of the list.

3

Singly
Linked List

Doubly
Linked List

1 5 4 5

3 1 5 4 5

End-of-list
pointer

27

2020-10-23 CS 311 Fall 2020

More on Linked Lists
Doubly Linked Lists [2/3]

Doubly Linked Lists have essentially all the advantages of Singly
Linked Lists, plus some more.
§ An end-of-list pointer can be maintained without trouble.
§ They allow efficient insert/remove at both ends of the list.
§ They allow efficient insert-before-this-node and remove-this-node.
§ They allow efficient reverse iteration.

However, Doubly Linked Lists are a little slower.
§ Constant-time operations remain O(1), but the constant is larger.

The Bottom Line
§ Doubly Linked Lists are a good basis for a general-purpose generic

container type.
§ Singly Linked Lists are more special-purpose (all those asterisks).

28

2020-10-23 CS 311 Fall 2020

More on Linked Lists
Doubly Linked Lists [3/3]

With Doubly Linked Lists, we
can eliminate asterisks.

*O(1) if no reallocate-and-copy.
§ Pre-allocate to ensure this.

Smart Array Doubly
Linked List

Look-up by index O(1) O(n)

Search sorted O(log n) O(n)

Search unsorted O(n) O(n)

Sort O(n log n) O(n log n)

Insert @ given pos O(n) O(1)

Remove @ given pos O(n) O(1)

Splice O(n) O(1)

Insert @ beginning O(n) O(1)

Remove @ beginning O(n) O(1)

Insert @ end O(n)*
amortized const

O(1)

Remove @ end O(1) O(1)

Traverse O(n) O(n)

Find faster
with an array

Rearrange faster
with a Linked List

29

More on Linked Lists
TO BE CONTINUED …

More on Linked Lists will be continued next time.

2020-10-23 CS 311 Fall 2020 30

