
Allocation & Efficiency
Generic Containers
Thoughts on Project 5

CS 311 Data Structures and Algorithms
Lecture Slides
Wednesday, October 21, 2020

Glenn G. Chappell
Department of Computer Science
University of Alaska Fairbanks
ggchappell@alaska.edu

© 2005–2020 Glenn G. Chappell
Some material contributed by Chris Hartman

Review

2020-10-21 CS 311 Fall 2020 2

2020-10-21 CS 311 Fall 2020

Review
Where Are We? — The Big Challenge

Our problem for most of the rest of the semester:
§ Store: A collection of data items, all of the same type.
§ Operations:

§ Access items [single item: retrieve/find, all items: traverse].
§ Add new item [insert].
§ Eliminate existing item [delete].

§ Time & space efficiency are desirable.

A solution to this problem is a container.
In a generic container, client code can specify the value type.

3

2020-10-21 CS 311 Fall 2020

Unit Overview
Data Handling & Sequences

Major Topics
§ Data abstraction
§ Introduction to Sequences
§ Interface for a smart array
§ Basic array implementation
§ Exception safety
§ Allocation & efficiency
§ Generic containers
§ Node-based structures
§ More on Linked Lists
§ Sequences in the C++ STL
§ Stacks
§ Queues

P
P

Smart Arrays

Linked Lists

P
P
P

4

2020-10-21 CS 311 Fall 2020

Review
Interface for a Smart Array [1/2]

We wish to implement a Sequence in C++ using a smart array. It
will know its size, be able to copy itself, etc. It will also be able
to change its size.

Basic Ideas
§ Use a C++ class. An object of the class

implements a single Sequence.
§ Use iterators, operators, ctors, and the dctor in conventional ways.
§ Every function in the interface should exist in order to implement,

or somehow make possible, an ADT operation.

You will finish this
implementation in

Project 5.

5

2020-10-21 CS 311 Fall 2020

Review
Interface for a Smart Array [2/2]

Ctors & Dctor
§ Default ctor
§ Ctor given size
§ Copy ctor
§ Move ctor
§ Dctor

Member Operators
§ Copy assignment
§ Move assignment
§ Bracket

Global Operators
None

Named Global Functions
None

Named Public Member Functions
§ size
§ empty
§ begin
§ end
§ resize
§ insert
§ erase
§ push_back
§ pop_back
§ swap

All design decisions so far
have been made exactly the
same as in std::vector—

except that vector has
other members, too.

6

Review
Basic Array Implementation

Call our class FSArray (Frightfully Smart Array).
What type should an array item be?

§ Use int for the value type.
§ This is just for now. You will make it generic in Project 5.

How should we implement the iterators?
§ Use pointers for iterators (int *, const int *).

What data members should our array class have?
§ Size of the array: size_type _size;
§ Pointer to the array: value_type * _data;

Can we use automatically generated versions of the Big Five?
§ No. We are directly managing an owned resource.

2020-10-21 CS 311 Fall 2020

As we will see, this
design actually has a

significant flaw—which
may not be obvious.

7

2020-10-21 CS 311 Fall 2020

Review
Exception Safety [1/5]

Exception safety. Does a function ever throw, and if so:
§ Are resource leaks avoided?
§ Are data left in a usable state?
§ Do we know something about that state?

Basic Guarantee. Data remain in a usable
state, and resources are never leaked,
even in the presence of exceptions.

Strong Guarantee. If the operation throws
an exception, then it makes no changes
that are visible to the client code.

No-Throw Guarantee. The operation never
throws an exception.

Minimum standard

Preferred; may not be
offered, usually for
efficiency reasons

Required in some
special situations

Each guarantee
includes the earlier

guarantees.

8

Review
Exception Safety [2/5]

To ensure that code is exception-safe, look at every place an
exception might be thrown. For each, make sure that, if an
exception is thrown, then either
§ the exception is caught and handled internally, or
§ the function throws and adheres to its guarantees.

A bad design may make exception safety impossible.
§ Good design is part of exception safety.
§ The Single Responsibility Principle (SRP)—every software

component should have exactly one well defined responsibility—can
be helpful here.

Rule. A non-const member function should not return an
object by value.

2020-10-21 CS 311 Fall 2020

Related changes were made
in fsarray.h, fsarray.cpp.

9

Review
Exception Safety [3/5]

Placing noexcept after a parameter list declares a function as
throwing no exceptions. This is a noexcept specification.

void foo() noexcept;

A destructor is implicitly marked noexcept, if the destructors of all
data members—and base classes, if any—are noexcept, and you
do not mark it otherwise.

Make the move ctor and move assignment operator noexcept,
along with functions they call. This enables various
optimizations.

2020-10-21 CS 311 Fall 2020

Destructors will be noexcept, unless there
is EVIL code lurking somewhere about.

Related changes were made
in fsarray.h, fsarray.cpp.

10

Review
Exception Safety [4/5]

The noexcept status of a function call or other expression can be
tested at runtime, using the noexcept operator.

if (noexcept(foo()))
{

…

This is what allows the move-related optimizations mentioned on
the previous slide to be done.

2020-10-21 CS 311 Fall 2020 11

Review
Exception Safety [5/5]

Commit function: a non-throwing function used to finalize the
result of a computation.

If we need to alter data in a way that is difficult to undo, but we
still want to offer the Strong Guarantee, then we may wish to
write our code as follows:
§ Attempt to construct the altered version of the data.
§ If this fails, then exit, destroying the attempt (generally automatic).
§ If the attempt succeeds, then use a commit function to commit to

the new version of the data.

Some possible commit functions:
§ Swap member function.
§ Move constructor.
§ Move assignment.

2020-10-21 CS 311 Fall 2020

We are using this one.

Related changes in fsarray.h,
fsarray.cpp are left for you to make.

12

Allocation & Efficiency

2020-10-21 CS 311 Fall 2020 13

Allocation & Efficiency
Problem

Consider how to write FSArray::resize.

Method
§ If we resize smaller than or equal to the current size, then just set

the _size member to the new value. (We would need to change the
class invariants: _data points to an array of at least _size ints.)

§ If we resize larger, then allocate a new memory block that is large
enough for the new array, copy the data there, and increase _size
to the new value. We call this reallocate-and-copy.

Problem
§ Suppose we use push_back to add a large number of items to an

FSArray. Calling push_back always does a reallocate-and-copy, so
this way of adding item is very inefficient.

§ With the current design, there is no way to
write an efficient insert-at-end for FSArray.

2020-10-21 CS 311 Fall 2020

This is the significant—
but not obvious—flaw

mentioned earlier.

14

2020-10-21 CS 311 Fall 2020

Allocation & Efficiency
Amortized Constant Time [1/3]

For a smart (resizable) array, insert-at-end is linear time.
It is constant time if space is available (already allocated).
It is linear time in general, due to a possible reallocate-and-copy.

We can speed this up most of the time if we reallocate very rarely.
When we reallocate, get more memory than we need. Perhaps
twice as much. Then do not reallocate again until we fill this up.

Q. Using this idea, suppose we do many insert-at-end operations.
How much time is required for k insert-at-end operations?

A. O(k).
§ If reallocate-and-copy ups allocated memory by a constant factor.
§ Even though a single operation is not O(1).

15

2020-10-21 CS 311 Fall 2020

Allocation & Efficiency
Amortized Constant Time [2/3]

An operation is amortized constant-time if
k consecutive operations require O(k) time.

Amortized constant time means constant time on average over a
large number of consecutive operations. (It does not mean
constant time on average over all possible inputs.)

For each of the efficiency categories, it is a good idea to have in
mind an algorithm or operation in that category.
§ Constant-time example: look-up by index in an array.
§ Logarithmic-time example: Binary Search.
§ Linear-time example: lots of possibilities, e.g., finding a maximum.
§ Log-linear-time example: a fast comparison sort (Merge Sort,

Introsort, Heap Sort).
§ Amortized constant-time example: insert-at-end for a well written

resizable array.

This is our last
efficiency-related

terminology.

16

Allocation & Efficiency
Amortized Constant Time [3/3]

Q. Where does amortized constant time fit into the above list?
A. It does not fit into the list!

The above are all about the worst-case time required for a single
operation; amortized constant-time is not.

Insert-at-end for a well written resizable array is amortized
constant-time. It is also still linear time.

2020-10-21 CS 311 Fall 2020

Using Big-O In Words

O(1) Constant time

O(log n) Logarithmic time

O(n) Linear time

O(n log n) Log-linear time

O(n2) Quadratic time

O(cn), for some c > 1 Exponential time

17

Allocation & Efficiency
Array Redesign — Internals

Q. How can we revise FSArray—internally—to allow for amortized
constant-time push_back?

A. Track allocated space (capacity)
along with size of client’s dataset.

Finish the details of this revised design.
§ Three data members: _capacity, _size, _data.
§ Class invariant: 0 <= _size <= _capacity.
§ Class invariant: _data points to an array of _size _capacity ints;

except: _data may be nullptr if _size _capacity is 0.
§ A default-constructed FSArray will probably be resized larger. Set

its capacity to something nonzero.
§ When resizing to current capacity or smaller, just set _size.
§ When resizing to larger than current capacity, reallocate-and-copy:

new_capacity is at least 2×old_capacity, and at least new_size.

2020-10-21 CS 311 Fall 2020

0 1 2 3 4 5

Client’s data (size = 6)

Our allocated space (capacity = 9)

18

Allocation & Efficiency
Array Redesign — CODE

Internal redesign:
§ Three data members: _capacity,

_size, _data.
§ 0 <= _size <= _capacity.
§ _data points to an array of

_capacity ints; except: _data may be nullptr if _capacity is 0.
§ A default-constructed FSArray should have nonzero capacity.
§ When resizing to current capacity or smaller, just set _size.
§ When resizing to larger than current capacity, new_capacity should

be at least 2×old_capacity, and also at least new_size.

TO DO
§ Make appropriate changes to

the parts of the FSArray
package that have been written.

2020-10-21 CS 311 Fall 2020

0 1 2 3 4 5

Client’s data (size = 6)

Our allocated space (capacity = 9)

Done. See the latest versions
of fsarray.h & fsarray.cpp.

This is the last change I
expect to make to this code.

19

Generic Containers

2020-10-21 CS 311 Fall 2020 20

Generic Containers
Class Templates

A generic container is a container that can hold a client-specified
value type.
§ Examples: most STL containers, including std::vector.

In C++, we usually implement a generic container using a class
template.

When others write code that uses your template, they need to
know your requirements on types.
§ What member functions must exist, required safety levels.
§ It is assumed that all functions offer at least the Basic Guarantee.

You do not need to mention that requirement.
§ If you need a member function to offer a stronger guarantee (e.g.,

destructor must not throw), then you do need to mention this.
Coming in the 2020 Standard: concepts, which allow you to tell

the compiler (some of) your requirements on types.

2020-10-21 CS 311 Fall 2020 21

Generic Containers
Exception Safety [1/3]

When we write a template, we deal with the type
given to us using its own member functions.

These client-provided functions may throw—
unless we require that they do not, in our
requirements on types.

Exception safety gets trickier. The same
procedures apply, but now we have more
places that might generate exceptions.

2020-10-21 CS 311 Fall 2020

Client code

Our package

Implementation
of template-

parameter type

This code
might throw …

calls

calls

22

Generic Containers
Exception Safety [2/3]

Since every member function of a template parameter type may
throw (unless it is specifically prohibited from throwing), we
need to check every use of such a member function, to make
sure that we deal with them correctly.

Do not forget:
§ Functions that are implicitly called (default ctor, copy ctor, etc.).
§ Operators (in particular: assignment).
§ STL algorithms. Those that modify a dataset (std::copy,

std::rotate, etc.) generally use the assignment operator. If the
assignment operator can throw, then these STL algorithms can
throw.

Do not worry about these when they are called on built-in types.

size_type size() const;

2020-10-21 CS 311 Fall 2020

Returned by value. Copy ctor call?

Yes, but size_type is std::size_t, a
built-in type; its operations will not throw.

23

Generic Containers
Exception Safety [3/3]

One tricky situation is copying the data in a dynamic array, since
copy assignment of a class type might throw.

Suppose that, if an error occurs, we need to deallocate the
dynamic array created below.

arr = new MyType[size];

copy(begin(x), end(x), arr);

We will come back to this example shortly.

2020-10-21 CS 311 Fall 2020

If MyType copy assignment
throws, then we have a
memory leak!

24

Generic Containers
Exception Neutrality [1/2]

When we call client-provided functions, the
client code generally needs to handle any
exceptions.

Code is exception-neutral
if it allows exceptions
thrown by client-provided
code to propagate unchanged to the caller.

When such code calls a client-provided
function that may throw, it must do one of
two things:
§ Call the function outside a try block, so that

any exceptions terminate our code
immediately.

§ Or, call the function inside a try block, catch
all exceptions, do necessary clean-up, and
re-throw.

2020-10-21 CS 311 Fall 2020

Client code

Our package

Implementation
of template-

parameter type

calls

calls

This is our last
exception-related

terminology.

This code
might throw …

… and if it does, then
this code handles
the exception.

25

Generic Containers
Exception Neutrality [2/2]

Putting it all together, we can use catch-all, clean-up, re-throw to
get both exception safety and exception neutrality.

arr = new MyType[size];
try
{

copy(begin(x), end(x), arr);
}
catch (...)
{

delete [] arr;
throw;

}

2020-10-21 CS 311 Fall 2020

This helps us meet the Basic
Guarantee—and also the Strong
Guarantee, if this function does
nothing else.

This makes our code
exception-neutral.

Called outside any try-block.
If this fails, then we exit
immediately, throwing an
exception.

Called inside a try-block. If this
fails, then we need to deallocate
the array before exiting.

26

Thoughts on Project 5

2020-10-21 CS 311 Fall 2020 27

Thoughts on Project 5
Introduction

This ends the material relevant to Project 5.
Next, we will look at node-based containers. You will not need to

use those ideas in Project 5.

In Project 5, you will turn the smart array we have been writing in
class into a generic container implemented as a class template.

Error handling will get trickier, since now things like assignment of
the value type may throw.
§ This means that STL algorithms like std::copy and std::rotate

may throw.

2020-10-21 CS 311 Fall 2020 28

Thoughts on Project 5
Important Ideas

Things to pay attention to on Project 5:
§ The Coding Standards

§ Document everything properly.
§ Exception Safety

§ Are your member functions offering the proper guarantee?
§ All member functions must make at least the Basic Guarantee.
§ Constructors generally need to make the Strong Guarantee.
§ Destructors, move operations, and swap must make the No-Throw Guarantee.
§ Functions that do more complex modifications (resize, insert, erase) might

not offer the Strong Guarantee, for the sake of efficiency.
§ Do member functions satisfy their guarantees?

§ Check every operation that might throw!
§ For a class template, this includes things like std::copy, std::rotate.

§ Allocation & Efficiency
§ Are functions that might need to reallocate-and-copy (resize, insert,
push_back) written to handle this efficiently?

§ Generic Containers
§ Are all functions exception-neutral?

2020-10-21 CS 311 Fall 2020 29

Thoughts on Project 5
Info on Slides

There is information on past slides that is relevant to writing
member function swap, along with the copy ctor, the copy
assignment operator, and the move assignment operator. See
the slides for:
§ Invisible Functions II
§ Exception Safety: Commit Functions
§ Generic Containers: Exception Neutrality

2020-10-21 CS 311 Fall 2020 30

Thoughts on Project 5
Writing resize

Member function resize needs to allow for amortized constant-
time insert-at-end.

One way to implement resize:
§ If resizing to ≤ capacity: just set _size to the new value.
§ If resizing to > capacity:

§ We need to compute newSize, newCapacity, newData.
§ newSize is given.
§ newCapacity should be at least twice the old capacity, at least newSize,

and at least the minimum capacity.
§ newData is allocated and then copied to, using std::copy.
§ What if std::copy fails? Be sure any necessary clean-up is done.
§ If the copy succeeds, swap each data member with its new value, using
std::swap. Then be sure the old data is cleaned up properly.

Alternatively, instead of using three variables (newSize,
newCapacity, newData), create a temporary object, and use
member function swap to do the commit. If you do this, then be
careful to set the size and capacity correctly!

2020-10-21 CS 311 Fall 2020 31

Thoughts on Project 5
Writing insert & erase [1/4]

Member functions insert and erase both resize the client’s array.
§ insert resizes it one larger.
§ erase resizes it one smaller.

Q. How do we do a resize operation?
A. Call member function resize.

For insert: resize larger, then move items up,
putting the new item in its proper place.

For erase: move items down, then resize smaller.

2020-10-21 CS 311 Fall 2020

Note the reversal in the order
in which things are done.

32

Thoughts on Project 5
Writing insert & erase [2/4]

Useful when writing insert and erase:
std::rotate (<algorithm>) takes three iterators, specifying two

consecutive ranges. It interchanges the two ranges.

rotate(iter1, iter2, iter3);

Suppose one of the two ranges contains just one item. Then a call
to std::rotate will move each item in the other range down or
up one spot, which is what you want to do in insert and erase.

2020-10-21 CS 311 Fall 2020

5 4 3 2 20 40

iter3iter2iter1

5 4 3 220 40 60

60Before

After

1

1

33

Thoughts on Project 5
Writing insert & erase [3/4]

Member functions insert and erase return iterators.
§ insert returns an iterator to the item inserted.
§ erase returns an iterator to the item just past the erased item.

For erase, this is easy: return the same iterator that was given.

But insert resizes the array to make it larger. So it might do a
reallocate-and-copy. Be sure you return an iterator to the new
array, not the old one.
§ Hint. The given iterator and the returned iterator point to items with

the same index. Save the index before resizing. After resizing,
construct the new iterator from the saved index, and return it.

§ An iterator is a pointer (in this project). An index is a number, of
type size_type.

2020-10-21 CS 311 Fall 2020 34

Thoughts on Project 5
Writing insert & erase [4/4]

Member functions insert and erase may make small changes to
the container.

And we want them to be fast. In particular, insert must be
amortized constant-time when inserting at the end.

This means that the commit-function idea is too slow to use when
implementing these functions.

Consider not offering the Strong Guarantee in member functions
insert and erase (and resize).

2020-10-21 CS 311 Fall 2020 35

